亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accuracy of machine learning and traditional statistical models in the prediction of postpartum haemorrhage: a systematic review

观察研究 医学 梅德林 系统回顾 科克伦图书馆 荟萃分析 斯科普斯 研究异质性 机器学习 结果(博弈论) 医学物理学 统计 人工智能 内科学 计算机科学 政治学 数理经济学 法学 数学
作者
Thaís Baêta,Ana Luiza Lunardi Rocha,Juliana Almeida Oliveira,Ana Paula Couto da Silva,Zilma Silveira Nogueira Reis
出处
期刊:BMJ Open [BMJ]
卷期号:15 (3): e094455-e094455 被引量:5
标识
DOI:10.1136/bmjopen-2024-094455
摘要

Objectives To evaluate whether postpartum haemorrhage (PPH) can be predicted using both machine learning (ML) and traditional statistical models. Design Diagnostic systematic review and meta-analysis of observational and clinical studies, prospectively registered on PROSPERO, performed accordingly to the Preferred Reporting Items for Systematic Reviews and Meta-analysis and Prediction model risk of bias assessment tool for studies developing, validating or updating prediction models, with the use of an independent analysis by a large language model (GPT-4 Open AI). Data sources MEDLINE/PubMed, LILACS-BVS, Cochrane Library, Scopus-Elsevier, Embase-Elsevier and Web of Science. Eligibility criteria for selected studies The literature search was conducted on 4 January 2024 and included observational studies and clinical trials published in the past 10 years that assessed early PPH and PPH prediction and that applied accuracy metrics for outcomes evaluation. We excluded studies that did not define PPH or had exclusive PPH subgroups evaluation. Primary and secondary outcome measures The primary outcome is the accuracy of PPH prediction using both ML and conventional statistical models. A secondary outcome is to describe the strongest risk factors of PPH identified by ML and traditional statistical models. Results Of 551 citations screened, 35 studies were eligible for inclusion. The synthesis gathered 383 648 patients in 24 studies conducted with conventional statistics (CS), 9 studies using ML models and 2 studies using both methods. Multivariate regression was a preferred modelling approach to predict PPH in CS studies, while ML approaches used multiple models and a myriad of features. ML comparison to CS was only performed in two studies, and ML models demonstrated a 95% higher likelihood of PPH prediction compared with CS when applied to the same dataset (OR 1.95, 95% CI 1.88 to 2.01, p<0.001). The I² had a value of 54%, p=0.14, indicating moderate heterogeneity between the studies. Conclusions ML models are promising for predicting PPH. Nevertheless, they often require a large number of predictors, which may limit their applicability or necessitate automation through digital systems. This poses challenges in resource-scarce settings where the majority of PPH complications occur. PROSPERO registration number CRD42024521059.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
inRe发布了新的文献求助10
4秒前
QI发布了新的文献求助10
11秒前
30秒前
MiaMia应助ceeray23采纳,获得20
31秒前
Jenny完成签到,获得积分10
35秒前
Selena发布了新的文献求助10
35秒前
40秒前
脑洞疼应助Selena采纳,获得10
44秒前
自由的梦露完成签到,获得积分10
46秒前
icoo发布了新的文献求助10
47秒前
希望天下0贩的0应助icoo采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助ceeray23采纳,获得20
1分钟前
Criminology34应助ceeray23采纳,获得20
1分钟前
科研通AI6应助危机的尔琴采纳,获得10
1分钟前
1分钟前
李月完成签到 ,获得积分10
1分钟前
hugeyoung发布了新的文献求助10
1分钟前
青山完成签到 ,获得积分10
1分钟前
赘婿应助sfwrbh采纳,获得10
1分钟前
hugeyoung完成签到,获得积分10
2分钟前
2分钟前
icoo发布了新的文献求助10
2分钟前
3分钟前
3分钟前
liuheqian发布了新的文献求助10
3分钟前
神医magical发布了新的文献求助10
3分钟前
TXZ06完成签到,获得积分10
3分钟前
Jason完成签到,获得积分20
4分钟前
Jason发布了新的文献求助10
4分钟前
小珂完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
orixero应助icoo采纳,获得10
4分钟前
4分钟前
4分钟前
icoo发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628412
求助须知:如何正确求助?哪些是违规求助? 4716854
关于积分的说明 14964206
捐赠科研通 4786131
什么是DOI,文献DOI怎么找? 2555643
邀请新用户注册赠送积分活动 1516873
关于科研通互助平台的介绍 1477471