Global Cross-Entropy Loss for Deep Face Recognition

Softmax函数 人工智能 相似性(几何) 模式识别(心理学) 样品(材料) 样本熵 面部识别系统 成对比较 计算机科学 数学 人工神经网络 图像(数学) 化学 色谱法
作者
Weisong Zhao,Xiangyu Zhu,Haichao Shi,Xiaoyu Zhang,Guoying Zhao,Zhen Lei
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 1672-1685
标识
DOI:10.1109/tip.2025.3546481
摘要

Contemporary deep face recognition techniques predominantly utilize the Softmax loss function, designed based on the similarities between sample features and class prototypes. These similarities can be categorized into four types: in-sample target similarity, in-sample non-target similarity, out-sample target similarity, and out-sample non-target similarity. When a sample feature from a specific class is designated as the anchor, the similarity between this sample and any class prototype is referred to as in-sample similarity. In contrast, the similarity between samples from other classes and any class prototype is known as out-sample similarity. The terms target and non-target indicate whether the sample and the class prototype used for similarity calculation belong to the same identity or not. The conventional Softmax loss function promotes higher in-sample target similarity than in-sample non-target similarity. However, it overlooks the relation between in-sample and out-sample similarity. In this paper, we propose Global Cross-Entropy loss (GCE), which promotes 1) greater in-sample target similarity over both the in-sample and out-sample non-target similarity, and 2) smaller in-sample non-target similarity to both in-sample and out-sample target similarity. In addition, we propose to establish a bilateral margin penalty for both in-sample target and non-target similarity, so that the discrimination and generalization of the deep face model are improved. To bridge the gap between training and testing of face recognition, we adapt the GCE loss into a pairwise framework by randomly replacing some class prototypes with sample features. We designate the model trained with the proposed Global Cross-Entropy loss as GFace. Extensive experiments on several public face benchmarks, including LFW, CALFW, CPLFW, CFP-FP, AgeDB, IJB-C, IJB-B, MFR-Ongoing, and MegaFace, demonstrate the superiority of GFace over other methods. Additionally, GFace exhibits robust performance in general visual recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卜天亦完成签到,获得积分10
1秒前
1秒前
LO一一VE完成签到,获得积分10
2秒前
2秒前
didi发布了新的文献求助10
2秒前
3秒前
3秒前
完美世界应助织安采纳,获得10
3秒前
3秒前
愤怒的海白应助守诺采纳,获得10
4秒前
煎饼狗子完成签到,获得积分20
4秒前
七笙完成签到,获得积分10
5秒前
edtaa发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
wan发布了新的文献求助10
6秒前
qqqq_8完成签到,获得积分10
6秒前
失眠芝麻发布了新的文献求助10
6秒前
8秒前
lixiaorui发布了新的文献求助30
8秒前
樱偶猫发布了新的文献求助10
9秒前
11秒前
12秒前
情怀应助柔弱雅彤采纳,获得10
12秒前
科研通AI2S应助柔弱雅彤采纳,获得10
12秒前
脑洞疼应助平淡的寒风采纳,获得10
12秒前
聪慧的正豪应助柔弱雅彤采纳,获得10
12秒前
Yesyes发布了新的文献求助10
12秒前
bkagyin应助柔弱雅彤采纳,获得30
12秒前
Ferry发布了新的文献求助10
13秒前
edtaa发布了新的文献求助10
13秒前
llyllylly发布了新的文献求助30
13秒前
量子星尘发布了新的文献求助10
13秒前
yang完成签到,获得积分10
14秒前
辛勤夜安发布了新的文献求助10
14秒前
14秒前
失眠芝麻完成签到,获得积分10
15秒前
lhm完成签到,获得积分10
16秒前
浮游应助包破茧采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087552
求助须知:如何正确求助?哪些是违规求助? 4302919
关于积分的说明 13409250
捐赠科研通 4128345
什么是DOI,文献DOI怎么找? 2260846
邀请新用户注册赠送积分活动 1264965
关于科研通互助平台的介绍 1199312