A Data Cleaning Method for the Identification of Outliers in Fishing Vessel Trajectories Based on a Geocoding Algorithm

地理编码 鉴定(生物学) 垂钓 离群值 算法 计算机科学 环境科学 数据挖掘 遥感 人工智能 地质学 渔业 植物 生物
作者
Li Zhang,Weifeng Zhou
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:13 (5): 917-917
标识
DOI:10.3390/jmse13050917
摘要

In modern fishery management, fishing vessel trajectory data are used to monitor and analyze fishing vessel activities. However, trajectory data are often of low quality, probably due to environmental factors, equipment failures, signal loss and operation errors, leading to numerous outliers in these data. These outliers not only undermine the credibility of the data but also negatively affect the subsequent data mining and decision-making. In this study, a data cleaning method for the identification of outlier points in fishing vessel trajectories based on the Geohash geocoding algorithm is given, which involves several key steps: obtaining and preprocessing the raw trajectory data; generating the corresponding Geohash codes for each ship position based on its latitude and longitude; calculating the reachable distance considering the time interval between the current point and the following points and their speeds; querying the neighborhood of the current point based on the reachable distance; and obtaining all Geohash codes of the reachable areas of the fishing vessels within the time interval as the reachable range grid set of the current position. The reachable range grid set of the current position is compared with the reachable range grid sets of the previous point identified as normal and the next point in the fishing vessel trajectory. If there is no intersection, it is determined that the current fishing vessel position is an outlier, and this point will be excluded. The method proposed in this study is able to effectively identify outliers in trajectory data, achieving efficient and effective trajectory data cleaning and improving the accuracy and reliability of the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
hrzmlily发布了新的文献求助30
2秒前
JG发布了新的文献求助10
2秒前
冷酷的小之完成签到,获得积分10
2秒前
木易同学发布了新的文献求助10
3秒前
yggmdggr完成签到,获得积分10
3秒前
丘比特应助muzi采纳,获得10
3秒前
3秒前
韦智杰发布了新的文献求助10
4秒前
英姑应助滕擎采纳,获得10
4秒前
单薄茗完成签到,获得积分10
5秒前
怕黑剑身完成签到,获得积分10
5秒前
bluer完成签到,获得积分10
5秒前
詹雪晴发布了新的文献求助10
6秒前
6秒前
6秒前
桃源theshy发布了新的文献求助10
7秒前
7秒前
会飞的螃蟹完成签到,获得积分10
8秒前
9秒前
桐桐应助六七采纳,获得10
9秒前
9秒前
holly发布了新的文献求助10
11秒前
桃源theshy完成签到,获得积分20
12秒前
尹山蝶发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
junjieLIU完成签到,获得积分10
13秒前
13秒前
zero完成签到 ,获得积分10
14秒前
14秒前
星辰大海应助詹雪晴采纳,获得10
14秒前
Hello应助ZjieY采纳,获得10
15秒前
lwl666应助Ya采纳,获得10
15秒前
吴烦恼完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4289843
求助须知:如何正确求助?哪些是违规求助? 3816896
关于积分的说明 11953373
捐赠科研通 3460923
什么是DOI,文献DOI怎么找? 1898318
邀请新用户注册赠送积分活动 946774
科研通“疑难数据库(出版商)”最低求助积分说明 849890