Towards multi-scene learning: A novel cross-domain adaptation model based on sparse filter for traction motor bearing fault diagnosis in high-speed EMU

计算机科学 人工智能 稳健性(进化) 正规化(语言学) 断层(地质) 模式识别(心理学) 机器学习 生物化学 基因 地质学 地震学 化学
作者
Feiyu Lu,Qingbin Tong,Jianjun Xu,Ziwei Feng,Xin Wang,Jingyi Huo,Qingzhu Wan
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:60: 102536-102536 被引量:18
标识
DOI:10.1016/j.aei.2024.102536
摘要

Fault diagnosis of traction motor bearing is of great significance to improve the reliability and safety of high-speed electric multiple units (EMU). While the fault diagnosis method based on cross-domain adaptation has been successful in scenarios involving speed or load fluctuations, existing methods ignore the independence and diversity of features, resulting in unsatisfactory diagnostic results under multi-scene learning, thereby reducing the generalization ability. Moreover, the development of complex models is time-consuming, and their computational efficiency is low. To address these issues, this study proposes a novel cross-domain adaptation model based on sparse filtering (SFCDA), which consists of only two fully connected (FC) layers. Firstly, pre-training is conducted to utilize the soft reconstruction penalties to constrain the weights of sparse filtering and improve the independence of features. The weights of unsupervised training are used to initialize the parameters of the first FC layer of the SFCDA model. Secondly, a multiple sparse regularization (MSR) algorithm is proposed and used to constrain the SFCDA. Then, fine-tuning is conducted, in which the structural alignment function is used to measure the distribution distance between the source and target domain data. Minimizing the kernel norm can improve the diversity of features and enhance the robustness. Finally, the effectiveness of SFCDA in multi-scene learning is proved theoretically. It is validated in three fault diagnosis scenes in four different bearing datasets. The results show that the suggested approach is more straightforward and has a better fault diagnosis effect than the state-of-the-art domain adaptive approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大地上的鱼完成签到,获得积分10
2秒前
leo发布了新的文献求助10
3秒前
3秒前
3秒前
shinen完成签到,获得积分10
4秒前
852应助小化化爱学习采纳,获得10
4秒前
hahaha完成签到,获得积分20
4秒前
大个应助wang采纳,获得10
5秒前
hj456完成签到,获得积分10
5秒前
小白发布了新的文献求助20
6秒前
gugu发布了新的文献求助10
7秒前
8秒前
lilylian完成签到,获得积分10
9秒前
10秒前
若若1223完成签到 ,获得积分10
10秒前
谓风完成签到,获得积分10
11秒前
十三发布了新的文献求助10
11秒前
科研通AI5应助xphpyy采纳,获得10
12秒前
慕青应助王莉采纳,获得10
12秒前
14秒前
高挑的书雪完成签到,获得积分10
14秒前
虚幻采枫完成签到,获得积分10
14秒前
Ava应助青栞采纳,获得10
15秒前
平凡完成签到,获得积分10
16秒前
16秒前
平淡的天奇完成签到 ,获得积分10
16秒前
李文思完成签到,获得积分10
17秒前
研友_LwbGg8发布了新的文献求助10
18秒前
sowhat完成签到 ,获得积分10
18秒前
18秒前
完美世界应助姜酱酱酱采纳,获得10
18秒前
wang发布了新的文献求助10
22秒前
研友_LwbGg8完成签到,获得积分10
23秒前
Angela完成签到,获得积分10
23秒前
奥特斌完成签到 ,获得积分10
24秒前
畅快初柳关注了科研通微信公众号
25秒前
小yi又困啦完成签到 ,获得积分10
25秒前
十三完成签到,获得积分10
26秒前
研友_nVWP2Z完成签到 ,获得积分10
26秒前
lllllll完成签到,获得积分20
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782835
求助须知:如何正确求助?哪些是违规求助? 3328177
关于积分的说明 10235212
捐赠科研通 3043235
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759030