Deciphering Cell Types by Integrating scATAC-seq Data with Genome Sequences

计算生物学 基因组 生物 遗传学 基因
作者
Yuedong Yang,Yuansong Zeng,Mai Luo,Ningyuan Shangguan,Peiyu Shi,Junxi Feng,Jin Xu,Ken Chen,Yutong Lu,Weijiang Yu
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-3539732/v1
摘要

Abstract The single cell ATAC sequencing (scATAC-seq) technology provides insight into gene regulation and epigenetic heterogeneity at single-cell resolution, but cell annotation from scATAC-seq remains challenging due to high dimensionality and extreme sparsity within the data. Existing cell annotation methods mostly focused on cell peak matrix without fully utilizing the underlying genomic sequence. Here, we propose a method, SANGO, for accurate s ingle cell an notation by integrating g en o me sequences around the accessibility peaks within scATAC data. The genome sequences of peaks are encoded into low-dimensional embeddings, and then iteratively used to reconstruct the peak stats of cells through a fully-connected network. The learned weights are considered as regulatory modes to represent cells, and utilized to align the query cells and the annotated cells in the reference data through a graph transformer network for cell annotations. SANGO was demonstrated to consistently outperform competing methods on 55 paired scATAC-seq datasets across samples, platforms, and tissues. SANGO was also shown able to detect unknown tumor cells through attention edge weights learned by graph transformer. Moreover, according to the annotated cells, we found cell type-specific peaks that provide functional insights/ biological signals through expression enrichment analysis, cis-regulatory chromatin interactions analysis, and motif enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
zzx完成签到,获得积分10
刚刚
搞笑羽球人完成签到,获得积分10
1秒前
1秒前
完美世界应助aldeheby采纳,获得10
1秒前
1秒前
2秒前
2秒前
简单馒头发布了新的文献求助10
2秒前
糟糕的铁锤完成签到,获得积分0
4秒前
无语发布了新的文献求助10
4秒前
4秒前
王博涵发布了新的文献求助10
5秒前
甝虪发布了新的文献求助10
5秒前
ly0821完成签到,获得积分10
6秒前
8秒前
彭于晏应助111采纳,获得10
8秒前
李小皮发布了新的文献求助10
8秒前
8秒前
8秒前
西风烈长歌啸完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
酷波er应助忧伤的宝马采纳,获得10
12秒前
涅爹发布了新的文献求助10
13秒前
13秒前
FashionBoy应助old杜采纳,获得10
14秒前
热心水之发布了新的文献求助10
14秒前
谢谢发布了新的文献求助10
15秒前
杜天豪发布了新的文献求助10
15秒前
唉呦嘿发布了新的文献求助10
16秒前
打打应助everyone_woo采纳,获得10
17秒前
cxh发布了新的文献求助10
17秒前
领导范儿应助勇往直前采纳,获得10
20秒前
科研通AI6应助roser采纳,获得10
20秒前
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449166
求助须知:如何正确求助?哪些是违规求助? 4557377
关于积分的说明 14262889
捐赠科研通 4480184
什么是DOI,文献DOI怎么找? 2454462
邀请新用户注册赠送积分活动 1445097
关于科研通互助平台的介绍 1420965