Adapting OC20-trained EquiformerV2 Models for High-Entropy Materials

数学 计算机科学 统计物理学 物理
作者
Christian M. Clausen,Jan Rossmeisl,Zachary W. Ulissi
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.09811
摘要

Computational high-throughput studies, especially in research on high-entropy materials and catalysts, are hampered by high-dimensional composition spaces and myriad structural microstates. They present bottlenecks to the conventional use of density functional theory calculations, and consequently, the use of machine-learned potentials is becoming increasingly prevalent in atomic structure simulations. In this communication, we show the results of adjusting and fine-tuning the pretrained EquiformerV2 model from the Open Catalyst Project to infer adsorption energies of *OH and *O on the out-of-domain high-entropy alloy Ag-Ir-Pd-Pt-Ru. By applying an energy filter based on the local environment of the binding site the zero-shot inference is markedly improved and through few-shot fine-tuning the model yields state-of-the-art accuracy. It is also found that EquiformerV2, assuming the role of general machine learning potential, is able to inform a smaller, more focused direct inference model. This knowledge distillation setup boosts performance on complex binding sites. Collectively, this shows that foundational knowledge learned from ordered intermetallic structures, can be extrapolated to the highly disordered structures of solid-solutions. With the vastly accelerated computational throughput of these models, hitherto infeasible research in the high-entropy material space is now readily accessible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ardejiang发布了新的文献求助10
刚刚
刚刚
yoyo发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
小五发布了新的文献求助10
1秒前
zyw完成签到,获得积分10
2秒前
2秒前
爆米花应助Mike采纳,获得10
3秒前
SciGPT应助学术的裁缝采纳,获得10
4秒前
5秒前
深情安青应助Nikii采纳,获得10
5秒前
accept举报zwenng求助涉嫌违规
5秒前
CC发布了新的文献求助10
5秒前
5秒前
仲夏发布了新的文献求助10
6秒前
111发布了新的文献求助10
6秒前
accept应助FJ采纳,获得10
7秒前
7秒前
晚湖发布了新的文献求助10
7秒前
8秒前
8秒前
烟花应助PAD采纳,获得30
9秒前
11秒前
11秒前
xzn1123应助快乐的小乌龟采纳,获得10
11秒前
Regina发布了新的文献求助10
12秒前
小烦完成签到 ,获得积分10
12秒前
鑫xx发布了新的文献求助10
13秒前
哈哈关注了科研通微信公众号
13秒前
Yve应助卡皮巴拉yuan采纳,获得30
14秒前
隐形曼青应助尊敬帅哥采纳,获得10
14秒前
14秒前
Li发布了新的文献求助10
15秒前
rous发布了新的文献求助10
15秒前
许win完成签到,获得积分10
16秒前
传奇3应助稳重奇异果采纳,获得20
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790732
求助须知:如何正确求助?哪些是违规求助? 3335665
关于积分的说明 10275882
捐赠科研通 3052153
什么是DOI,文献DOI怎么找? 1675026
邀请新用户注册赠送积分活动 803023
科研通“疑难数据库(出版商)”最低求助积分说明 761007