粉煤灰
焚化
底灰
危险废物
渗滤液
废物管理
氯化石蜡
城市固体废物
同族
环境科学
污染物
污染
焚烧炉底灰
环境化学
化学
工程类
有机化学
生态学
生物
作者
Xu Han,Hui Chen,Wei Zhou,Bowen Liang,Siqin Pang,Bibai Du,Lixi Zeng
标识
DOI:10.1016/j.scitotenv.2024.171764
摘要
Nowadays incineration technology has become the most mainstream way for the disposal of municipal wastes. Short chain chlorinated paraffins (SCCPs) and medium chain chlorinated paraffins (MCCPs) are currently classified as new persistent organic pollutants (POPs) and candidate POPs under the Stockholm Convention, respectively. However, the occurrence and contamination characteristics of these main hazardous byproducts (e.g., leachate, fly ash, and bottom ash) from municipal solid waste incineration (MSWI) plants have remained unknown. This study focused on the SCCPs and MCCPs (defined as CPs) contamination and their annual emissions from leachate, fly ash, and bottom ash among three typical MSWI plants in Shenzhen, South China. Compared to the dissolved phase of the leachate, higher concentrations of CPs were detected in the adsorbed phase. The total concentrations of CPs ranged from lower method detection limits (1 in leachate (i.e., adsorbed phase) and bottom ash, while the opposite results were found in fly ash. The dominant SCCP congener groups were C10Cl6-7 in leachate and fly ash, and C13Cl6-7 in bottom ash. The dominant MCCP congener groups were C14Cl7-8 in leachate, fly ash and bottom ash samples. Principal component analysis (PCA) revealed the dominant CPs in fly ash were obviously different from those in leachate and bottom ash. Estimated total annual emissions of CPs from the three main hazardous byproducts generated from typical MSWI plants were estimated between 66.2 and 7510 kg/y and bottom ash contributed the most to the CP emissions. Overall, this study is the first report on CP contamination in hazardous byproducts from MSWI plants, and can provide basic data support for CP contamination control.
科研通智能强力驱动
Strongly Powered by AbleSci AI