已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved Double Deep Q-Network Algorithm Applied to Multi-Dimensional Environment Path Planning of Hexapod Robots

导线 六足动物 运动规划 计算机科学 机器人 算法 粒子群优化 适应性 趋同(经济学) 路径(计算) 人工神经网络 数学优化 模拟 人工智能 数学 生态学 大地测量学 经济增长 经济 生物 程序设计语言 地理
作者
Liuhongxu Chen,Qibiao Wang,Chao Deng,Bo Xie,Xianguo Tuo,Jiang Gang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (7): 2061-2061 被引量:2
标识
DOI:10.3390/s24072061
摘要

Detecting transportation pipeline leakage points within chemical plants is difficult due to complex pathways, multi-dimensional survey points, and highly dynamic scenarios. However, hexapod robots’ maneuverability and adaptability make it an ideal candidate for conducting surveys across different planes. The path-planning problem of hexapod robots in multi-dimensional environments is a significant challenge, especially when identifying suitable transition points and planning shorter paths to reach survey points while traversing multi-level environments. This study proposes a Particle Swarm Optimization (PSO)-guided Double Deep Q-Network (DDQN) approach, namely, the PSO-guided DDQN (PG-DDQN) algorithm, for solving this problem. The proposed algorithm incorporates the PSO algorithm to supplant the traditional random selection strategy, and the data obtained from this guided approach are subsequently employed to train the DDQN neural network. The multi-dimensional random environment is abstracted into localized maps comprising current and next level planes. Comparative experiments were performed with PG-DDQN, standard DQN, and standard DDQN to evaluate the algorithm’s performance by using multiple randomly generated localized maps. After testing each iteration, each algorithm obtained the total reward values and completion times. The results demonstrate that PG-DDQN exhibited faster convergence under an equivalent iteration count. Compared with standard DQN and standard DDQN, reductions in path-planning time of at least 33.94% and 42.60%, respectively, were observed, significantly improving the robot’s mobility. Finally, the PG-DDQN algorithm was integrated with sensors onto a hexapod robot, and validation was performed through Gazebo simulations and Experiment. The results show that controlling hexapod robots by applying PG-DDQN provides valuable insights for path planning to reach transportation pipeline leakage points within chemical plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL完成签到,获得积分10
刚刚
ljj发布了新的文献求助10
3秒前
4秒前
LL发布了新的文献求助10
4秒前
谭文完成签到 ,获得积分10
5秒前
7秒前
7秒前
骨化醇发布了新的文献求助10
7秒前
12秒前
柴郡喵完成签到,获得积分10
12秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
江知之完成签到 ,获得积分0
17秒前
Rin发布了新的文献求助10
18秒前
骨化醇完成签到,获得积分10
19秒前
贪玩的小蜜蜂应助特特采纳,获得10
23秒前
逆樊关注了科研通微信公众号
25秒前
nnn发布了新的文献求助10
27秒前
28秒前
xinlian发布了新的文献求助10
33秒前
guozizi应助wise111采纳,获得30
35秒前
飞逝的快乐时光完成签到 ,获得积分10
38秒前
科研通AI5应助虚幻的醉柳采纳,获得10
38秒前
特特完成签到,获得积分10
39秒前
39秒前
一双发布了新的文献求助10
41秒前
科研通AI5应助Yolo采纳,获得10
46秒前
48秒前
49秒前
50秒前
于呵呵呵呵完成签到 ,获得积分10
50秒前
52秒前
mashichuang发布了新的文献求助10
53秒前
54秒前
55秒前
56秒前
HEIKU应助林狗采纳,获得10
56秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815420
求助须知:如何正确求助?哪些是违规求助? 3359189
关于积分的说明 10400678
捐赠科研通 3076839
什么是DOI,文献DOI怎么找? 1690041
邀请新用户注册赠送积分活动 813577
科研通“疑难数据库(出版商)”最低求助积分说明 767674