CFSSynergy: Combining Feature-Based and Similarity-Based Methods for Drug Synergy Prediction

判别式 相似性(几何) 特征(语言学) 代表(政治) 计算机科学 人工智能 模式识别(心理学) 机器学习 政治学 政治 哲学 语言学 图像(数学) 法学
作者
Fatemeh Rafiei,Hojjat Zeraati,Karim Abbasi,Parvin Razzaghi,Jahan B. Ghasemi,Mahboubeh Parsaeian,Ali Masoudi‐Nejad
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2577-2585 被引量:26
标识
DOI:10.1021/acs.jcim.3c01486
摘要

Drug synergy prediction plays a vital role in cancer treatment. Because experimental approaches are labor-intensive and expensive, computational-based approaches get more attention. There are two types of computational methods for drug synergy prediction: feature-based and similarity-based. In feature-based methods, the main focus is to extract more discriminative features from drug pairs and cell lines to pass to the task predictor. In similarity-based methods, the similarities among all drugs and cell lines are utilized as features and fed into the task predictor. In this work, a novel approach, called CFSSynergy, that combines these two viewpoints is proposed. First, a discriminative representation is extracted for paired drugs and cell lines as input. We have utilized transformer-based architecture for drugs. For cell lines, we have created a similarity matrix between proteins using the Node2Vec algorithm. Then, the new cell line representation is computed by multiplying the protein–protein similarity matrix and the initial cell line representation. Next, we compute the similarity between unique drugs and unique cells using the learned representation for paired drugs and cell lines. Then, we compute a new representation for paired drugs and cell lines based on the similarity-based features and the learned features. Finally, these features are fed to XGBoost as a task predictor. Two well-known data sets were used to evaluate the performance of our proposed method: DrugCombDB and OncologyScreen. The CFSSynergy approach consistently outperformed existing methods in comparative evaluations. This substantiates the efficacy of our approach in capturing complex synergistic interactions between drugs and cell lines, setting it apart from conventional similarity-based or feature-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助可靠的映阳采纳,获得10
1秒前
2秒前
2秒前
清爽小白菜完成签到,获得积分10
2秒前
ding应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
小白应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
小白应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
Pothos应助科研通管家采纳,获得10
4秒前
小白应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
所所应助nnnnnn采纳,获得10
4秒前
我是老大应助Alex采纳,获得10
6秒前
6秒前
轻松小张发布了新的文献求助10
8秒前
QL发布了新的文献求助10
8秒前
Nzee完成签到,获得积分10
8秒前
11秒前
13秒前
Sindy发布了新的文献求助10
13秒前
脑洞疼应助点酒成诗采纳,获得30
16秒前
zhuming发布了新的文献求助10
16秒前
123完成签到,获得积分10
17秒前
17秒前
Alex发布了新的文献求助10
17秒前
17秒前
Shandongdaxiu发布了新的文献求助10
20秒前
BYG完成签到,获得积分10
21秒前
青出于蓝蔡完成签到,获得积分10
21秒前
nenoaowu发布了新的文献求助30
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777289
求助须知:如何正确求助?哪些是违规求助? 3322579
关于积分的说明 10210765
捐赠科研通 3037943
什么是DOI,文献DOI怎么找? 1666984
邀请新用户注册赠送积分活动 797884
科研通“疑难数据库(出版商)”最低求助积分说明 758061