CFSSynergy: Combining Feature-Based and Similarity-Based Methods for Drug Synergy Prediction

判别式 相似性(几何) 特征(语言学) 代表(政治) 计算机科学 人工智能 模式识别(心理学) 机器学习 政治学 语言学 政治 图像(数学) 哲学 法学
作者
Fatemeh Rafiei,Hojjat Zeraati,Karim Abbasi,Parvin Razzaghi,Jahan B. Ghasemi,Mahboubeh Parsaeian,Ali Masoudi‐Nejad
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2577-2585 被引量:40
标识
DOI:10.1021/acs.jcim.3c01486
摘要

Drug synergy prediction plays a vital role in cancer treatment. Because experimental approaches are labor-intensive and expensive, computational-based approaches get more attention. There are two types of computational methods for drug synergy prediction: feature-based and similarity-based. In feature-based methods, the main focus is to extract more discriminative features from drug pairs and cell lines to pass to the task predictor. In similarity-based methods, the similarities among all drugs and cell lines are utilized as features and fed into the task predictor. In this work, a novel approach, called CFSSynergy, that combines these two viewpoints is proposed. First, a discriminative representation is extracted for paired drugs and cell lines as input. We have utilized transformer-based architecture for drugs. For cell lines, we have created a similarity matrix between proteins using the Node2Vec algorithm. Then, the new cell line representation is computed by multiplying the protein-protein similarity matrix and the initial cell line representation. Next, we compute the similarity between unique drugs and unique cells using the learned representation for paired drugs and cell lines. Then, we compute a new representation for paired drugs and cell lines based on the similarity-based features and the learned features. Finally, these features are fed to XGBoost as a task predictor. Two well-known data sets were used to evaluate the performance of our proposed method: DrugCombDB and OncologyScreen. The CFSSynergy approach consistently outperformed existing methods in comparative evaluations. This substantiates the efficacy of our approach in capturing complex synergistic interactions between drugs and cell lines, setting it apart from conventional similarity-based or feature-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
积极向上完成签到,获得积分10
2秒前
seven发布了新的文献求助10
2秒前
小丸子完成签到,获得积分10
2秒前
2秒前
3秒前
yyh123发布了新的文献求助10
3秒前
5秒前
茶包发布了新的文献求助30
5秒前
知止完成签到,获得积分10
6秒前
kk完成签到,获得积分10
6秒前
小青椒应助AUM123采纳,获得30
7秒前
yzn完成签到,获得积分10
8秒前
机灵安白完成签到,获得积分10
8秒前
Abdurrahman完成签到,获得积分10
8秒前
淡定星星完成签到,获得积分10
8秒前
活泼的觅云完成签到,获得积分20
9秒前
艾路发布了新的文献求助10
9秒前
Singularity应助SONG采纳,获得10
9秒前
9秒前
qqsh发布了新的文献求助30
10秒前
Muzi完成签到 ,获得积分20
12秒前
桐桐应助心想事成采纳,获得10
13秒前
Awalong完成签到,获得积分10
13秒前
神勇的又槐完成签到,获得积分10
14秒前
14秒前
轩辕山槐完成签到,获得积分10
14秒前
15秒前
seven完成签到,获得积分10
15秒前
小青椒应助yyh123采纳,获得150
16秒前
17秒前
17秒前
17秒前
18秒前
18秒前
所所应助威武忆山采纳,获得10
19秒前
su发布了新的文献求助10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684634
求助须知:如何正确求助?哪些是违规求助? 5037948
关于积分的说明 15184748
捐赠科研通 4843860
什么是DOI,文献DOI怎么找? 2596968
邀请新用户注册赠送积分活动 1549572
关于科研通互助平台的介绍 1508077