亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved YOLOv5-based method for multi-species tea shoot detection and picking point location in complex backgrounds

开枪 增采样 计算机科学 人工智能 计算机视觉 数学 园艺 图像(数学) 生物
作者
Luyu Shuai,Jiong Mu,Xueqin Jiang,Peng Chen,Boda Zhang,Haoyang Li,Yuchao Wang,Zhiyong Li
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:231: 117-132 被引量:37
标识
DOI:10.1016/j.biosystemseng.2023.06.007
摘要

Accurate detection of tea shoots and precise location of picking points are prerequisites for automated, intelligent and accurate tea picking. A method was developed for the detection of tea shoots and key points and the localisation of picking points in complex environments. Images of four types of tea shoots were collected from multiple fields of view in a tea plantation over two months and labelling criteria were established. The YOLO-Tea model was developed based on the YOLOv5 network model, which uses a content-based upsampling operator (CARAFE) with a larger field of perception to implement the tea shoot feature upsampling operation, adds a convolutional attention mechanism module (CBAM) to focus the model on both channel and spatial dimensions to detect and localise important areas of tea shoots in a large field of view. The Bottleneck Transformers module was used to inject global self-focus for residuals to create long-distance dependencies on the tea shot feature images, and a six-point landmark regression head was added. The experimental results demonstrated that the YOLO-Tea model improved the mean Average Precision (mAP) value of tea shoots and their key points by 5.26% compared to YOLOv5. Finally, we use image processing methods to locate picking point positions based on key point information during the model inference phase. This study has theoretical and practical implications for the detection of tea shoots and their key points, tea shoot alignment, phenotype identification, pose estimation and picking locations of premium teas in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤勤恳恳写论文完成签到 ,获得积分10
33秒前
唐泽雪穗应助科研通管家采纳,获得10
39秒前
唐泽雪穗应助科研通管家采纳,获得10
40秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
飞天大南瓜发布了新的文献求助200
1分钟前
1分钟前
飞天大南瓜完成签到,获得积分10
1分钟前
2分钟前
2分钟前
陀思妥耶夫斯基完成签到 ,获得积分10
2分钟前
李健应助Harrison采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得30
2分钟前
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
2分钟前
能干凡松完成签到 ,获得积分10
2分钟前
satsuki发布了新的文献求助10
3分钟前
cc完成签到,获得积分10
3分钟前
孙老师完成签到 ,获得积分10
3分钟前
4分钟前
共享精神应助satsuki采纳,获得10
4分钟前
Harrison发布了新的文献求助10
4分钟前
倾卿如玉完成签到 ,获得积分10
4分钟前
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得30
4分钟前
rose发布了新的文献求助10
4分钟前
rose完成签到,获得积分10
5分钟前
善学以致用应助Hayat采纳,获得30
5分钟前
在水一方应助平常的乘云采纳,获得10
5分钟前
研友_Z335gZ完成签到,获得积分20
5分钟前
5分钟前
平常的乘云完成签到,获得积分10
5分钟前
5分钟前
6分钟前
搜集达人应助mengzhe采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078082
求助须知:如何正确求助?哪些是违规求助? 4296958
关于积分的说明 13387611
捐赠科研通 4119509
什么是DOI,文献DOI怎么找? 2256032
邀请新用户注册赠送积分活动 1260368
关于科研通互助平台的介绍 1193786