已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

[Ecosystem Carbon Storage in Hangzhou Bay Area Based on InVEST and PLUS Models].

环境科学 碳纤维 生态系统 土地利用 人口 生态学 生物 数学 算法 复合数 社会学 人口学
作者
Yue Ding,Lu‐Yi Wang,Feng Gui,Shenglin Zhao,Zhu Wen-quan
出处
期刊:PubMed 卷期号:44 (6): 3343-3352 被引量:2
标识
DOI:10.13227/j.hjkx.202204080
摘要

The study of the relationship between the land use and carbon storage of ecosystem services is of great significance to regional carbon emission management. It can provide an important scientific basis for the management of regional ecosystem carbon pools and the formulation of policies for emission reduction and foreign exchange increases. The carbon storage component of the InVEST model and the PLUS model were used to study and predict the temporal and spatial variation characteristics of carbon storage in the ecological system and their relationship with land use type for the periods of 2000-2018 and 2018-2030 in the research area. The results were as follows:the carbon storage in 2000, 2010, and 2018 in the research area was 7.250×108, 7.227×108, and 7.241×108 t, respectively, which suggested that it first decreased and then increased. The change in land use pattern was the main cause of changed carbon storage in the ecological system, and the fast expansion of construction land resulted in the decrease of carbon storage. With its correspondence to land use patterns, the carbon storage in the research area demonstrated significant spatial differentiation and was characterized by low storage in the northeast and high storage in the southwest according to the demarcation line of carbon storage. The resulting prediction was that the carbon storage in 2030 will be 7.344×108 t, with an increase of 1.42% compared with that in 2018, owing mainly to increased forest land. Soil type and population were the two driving factors with the highest contribution to construction land, and soil type and DEM had the highest contribution to forest land.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SophiaMX发布了新的文献求助10
1秒前
3秒前
flame发布了新的文献求助10
8秒前
心木完成签到 ,获得积分10
8秒前
yuki完成签到 ,获得积分10
9秒前
吴未完成签到,获得积分10
10秒前
积极的尔岚完成签到 ,获得积分10
12秒前
端庄洪纲完成签到 ,获得积分10
13秒前
围城完成签到 ,获得积分10
16秒前
蹦比欸比完成签到 ,获得积分10
22秒前
Brain完成签到 ,获得积分10
22秒前
翟大有完成签到 ,获得积分0
23秒前
24秒前
yxyer完成签到 ,获得积分10
25秒前
左佐完成签到 ,获得积分10
28秒前
李健的小迷弟应助SophiaMX采纳,获得10
29秒前
一千年以后完成签到 ,获得积分10
32秒前
可靠的寒风完成签到,获得积分10
36秒前
风中夜天完成签到 ,获得积分10
37秒前
Hastur00完成签到 ,获得积分10
37秒前
39秒前
光亮的天真完成签到,获得积分10
40秒前
45秒前
46秒前
情怀应助甜蜜乐松采纳,获得10
46秒前
3711发布了新的文献求助10
50秒前
小范完成签到 ,获得积分10
51秒前
刘刘完成签到 ,获得积分10
54秒前
Grace关注了科研通微信公众号
55秒前
56秒前
59秒前
jenningseastera完成签到 ,获得积分0
1分钟前
02发布了新的文献求助10
1分钟前
1分钟前
Joseph_sss完成签到 ,获得积分10
1分钟前
1分钟前
咔酱发布了新的文献求助10
1分钟前
Grace发布了新的文献求助30
1分钟前
Nikki发布了新的文献求助100
1分钟前
2021完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784776
求助须知:如何正确求助?哪些是违规求助? 3330019
关于积分的说明 10243948
捐赠科研通 3045312
什么是DOI,文献DOI怎么找? 1671612
邀请新用户注册赠送积分活动 800524
科研通“疑难数据库(出版商)”最低求助积分说明 759465