Exploring the Complexities of Dissolved Organic Matter Photochemistry from the Molecular Level by Using Machine Learning Approaches

反应性(心理学) 光化学 溶解有机碳 傅里叶变换离子回旋共振 化学 辐照 分子 有机分子 转化(遗传学) 河口 环境化学 生物系统 离子 有机化学 海洋学 物理 基因 地质学 病理 核物理学 生物 替代医学 医学 生物化学
作者
Chen Zhao,Xinyue Xu,Hongmei Chen,Fengwen Wang,Penghui Li,Chen He,Quan Shi,Yuanbi Yi,Xiaomeng Li,Si‐Liang Li,Ding He
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 17889-17899 被引量:24
标识
DOI:10.1021/acs.est.3c00199
摘要

Dissolved organic matter (DOM) sustains a substantial part of the organic matter transported seaward, where photochemical reactions significantly affect its transformation and fate. The irradiation experiments can provide valuable information on the photochemical reactivity (photolabile, photoresistant, and photoproduct) of molecules. However, the inconsistency of the fate of irradiated molecules among different experiments curtailed our understanding of the roles the photochemical reactions have played, which cannot be properly addressed by traditional approaches. Here, we conducted irradiation experiments for samples from two large estuaries in China. Molecules that occurred in irradiation experiments were characterized by the Fourier transform ion cyclotron resonance mass spectrometry and assigned probabilistic labels to define their photochemical reactivity. These molecules with probabilistic labels were used to construct a learning database for establishing a suitable machine learning (ML) model. We further applied our well-trained ML model to "un-matched" (i.e., not detected in our irradiation experiments) molecules from five estuaries worldwide, to predict their photochemical reactivity. Results showed that numerous molecules with strong photolability can be captured solely by the ML model. Moreover, comparing DOM photochemical reactivity in five estuaries revealed that the riverine DOM chemistry largely determines their subsequent photochemical transformation. We offer an expandable and renewable approach based on ML to compatibly integrate existing irradiation experiments and shed insight into DOM transformation and degradation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
步行街车神ahua完成签到,获得积分10
3秒前
4秒前
5秒前
7秒前
7秒前
科目三应助歪街采纳,获得10
8秒前
非鱼鱼子完成签到,获得积分10
8秒前
我只是个丙酮酸应助CCC采纳,获得20
8秒前
9秒前
xjfsky发布了新的文献求助10
10秒前
张世豪发布了新的文献求助10
10秒前
13秒前
啧啧zeze发布了新的文献求助30
13秒前
今后应助正直的西牛采纳,获得10
14秒前
希望天下0贩的0应助喵呜采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
16秒前
123应助科研通管家采纳,获得50
16秒前
16秒前
徐国发应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得30
16秒前
Orange应助科研通管家采纳,获得10
16秒前
b15966013195应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
徐国发应助科研通管家采纳,获得10
17秒前
b15966013195应助科研通管家采纳,获得10
17秒前
学术pig发布了新的文献求助30
17秒前
善学以致用应助张世豪采纳,获得10
21秒前
21秒前
司空豁发布了新的文献求助30
23秒前
23秒前
CipherSage应助zjh采纳,获得10
24秒前
25秒前
YAO发布了新的文献求助10
26秒前
Ava应助zhang采纳,获得10
27秒前
学术pig完成签到,获得积分10
27秒前
王小丫发布了新的文献求助10
28秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915811
求助须知:如何正确求助?哪些是违规求助? 3461425
关于积分的说明 10916731
捐赠科研通 3188241
什么是DOI,文献DOI怎么找? 1762507
邀请新用户注册赠送积分活动 852893
科研通“疑难数据库(出版商)”最低求助积分说明 793603