DA-Net: Dual Branch Transformer and Adaptive Strip Upsampling for Retinal Vessels Segmentation

计算机科学 分割 人工智能 增采样 计算机视觉 视网膜 图像分割 模式识别(心理学) 图像(数学) 生物化学 化学
作者
Changwei Wang,Rongtao Xu,Shibiao Xu,Weiliang Meng,Xiaopeng Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 528-538 被引量:20
标识
DOI:10.1007/978-3-031-16434-7_51
摘要

Since the morphology of retinal vessels plays a pivotal role in clinical diagnosis of eye-related diseases and diabetic retinopathy, retinal vessels segmentation is an indispensable step for the screening and diagnosis of retinal diseases, yet it is still a challenging problem due to the complex structure of retinal vessels. Current retinal vessels segmentation approaches roughly fall into image-level and patches-level methods based on the input type, while each has its own strengths and weaknesses. To benefit from both of the input forms, we introduce a Dual Branch Transformer Module (DBTM) that can simultaneously and fully enjoy the patches-level local information and the image-level global context. Besides, the retinal vessels are long-span, thin, and distributed in strips, making the square kernel of classic convolutional neural network false as it is only suitable for most natural objects with bulk shape. To better capture context information, we further design an Adaptive Strip Upsampling Block (ASUB) to adapt to the striped distribution of the retinal vessels. Based on the above innovations, we propose a retinal vessels segmentation Network with Dual Branch Transformer and Adaptive Strip Upsampling (DA-Net). Experiments validate that our DA-Net outperforms other state-of-the-art methods on both DRIVE and CHASE-DB1 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助一二采纳,获得10
刚刚
胡鸽发布了新的文献求助30
1秒前
Happy7发布了新的文献求助10
3秒前
彭于晏应助Maydalian采纳,获得10
4秒前
xiaixax发布了新的文献求助10
6秒前
7秒前
路遥知马力完成签到,获得积分10
7秒前
8秒前
11秒前
123456完成签到,获得积分10
11秒前
苏州河发布了新的文献求助10
14秒前
一二发布了新的文献求助10
14秒前
MF完成签到,获得积分20
14秒前
五岳三鸟完成签到,获得积分10
16秒前
上官若男应助zhouleiwang采纳,获得10
16秒前
思源应助苏州河采纳,获得10
18秒前
脑洞疼应助李大了采纳,获得10
24秒前
24秒前
lxb完成签到,获得积分10
25秒前
都是发布了新的文献求助10
25秒前
布丁宝完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
29秒前
31秒前
科研通AI2S应助lvsehx采纳,获得10
31秒前
苏州河发布了新的文献求助10
32秒前
胡鸽完成签到,获得积分10
33秒前
33秒前
白芷发布了新的文献求助10
34秒前
伶俐天蓉完成签到,获得积分10
35秒前
35秒前
FashionBoy应助王金娥采纳,获得10
36秒前
郭n完成签到 ,获得积分10
37秒前
39秒前
41秒前
Happy7完成签到,获得积分10
42秒前
CipherSage应助爻解采纳,获得10
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787853
求助须知:如何正确求助?哪些是违规求助? 3333506
关于积分的说明 10262045
捐赠科研通 3049268
什么是DOI,文献DOI怎么找? 1673469
邀请新用户注册赠送积分活动 801965
科研通“疑难数据库(出版商)”最低求助积分说明 760440