LiSNet: An artificial intelligence ‐based tool for liver imaging staging of hepatocellular carcinoma aggressiveness

肝细胞癌 医学 置信区间 放射科 接收机工作特性 人工智能 肿瘤科 内科学 计算机科学
作者
Shu Sun,Xun Xu,Qiu Ping Liu,Jie Neng Chen,Fei Zhu,Xi Sheng Liu,Yu‐Dong Zhang,Jie Wang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (11): 6903-6913 被引量:3
标识
DOI:10.1002/mp.15972
摘要

Abstract Background Presurgical assessment of hepatocellular carcinoma (HCC) aggressiveness can benefit patients’ treatment options and prognosis. Purpose To develop an artificial intelligence (AI) tool, namely, LiSNet, in the task of scoring and interpreting HCC aggressiveness with computed tomography (CT) imaging. Methods A total of 358 patients with HCC undergoing curative liver resection were retrospectively included. Three subspecialists were recruited to pixel‐wise annotate and grade tumor aggressiveness based on CT imaging. LiSNet was trained and validated in 193 and 61 patients with a deep neural network to emulate the diagnostic acumen of subspecialists for staging HCC. The test set comprised 104 independent patients. We subsequently compared LiSNet with an experience‐based binary diagnosis scheme and human–AI partnership that combined binary diagnosis and LiSNet for assessing tumor aggressiveness. We also assessed the efficiency of LiSNet for predicting survival outcomes. Results At the pixel‐wise level, the agreement rate of LiSNet with subspecialists was 0.658 (95% confidence interval [CI]: 0.490–0.779), 0.595 (95% CI: 0.406–0.734), and 0.369 (95% CI: 0.134–0.566), for scoring HCC aggressiveness grades I, II, and III, respectively. Additionally, LiSNet was comparable to subspecialists for predicting histopathological microvascular invasion (area under the curve: LiSNet: 0.668 [95% CI: 0.559–0.776] versus subspecialists: 0.699 [95% CI: 0.591–0.806], p > 0.05). In a human–AI partnered diagnosis, combining LiSNet and experience‐based binary diagnosis can achieve the best predictive ability for microvascular invasion (area under the curve: 0.705 [95% CI: 0.589–0.820]). Furthermore, LiSNet was able to indicate overall survival after surgery. Conclusion The designed LiSNet tool warrants evaluation as an alternative tool for radiologists to conduct automatic staging of HCC aggressiveness at the pixel‐wise level with CT imaging. Its prognostic value might benefit patients’ treatment options and survival prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaikaiYelloew发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
4秒前
领导范儿应助Ari_Kun采纳,获得10
4秒前
大鼻子的新四岁完成签到,获得积分10
5秒前
小谢完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
6秒前
舒心的久发布了新的文献求助10
6秒前
Freya应助exosome采纳,获得10
7秒前
wmm发布了新的文献求助10
7秒前
孤独从云应助LEETHEO采纳,获得10
8秒前
张鹏发布了新的文献求助10
8秒前
Harssi发布了新的文献求助10
10秒前
守望阳光1完成签到,获得积分10
10秒前
漓漓子发布了新的文献求助30
11秒前
14秒前
pluto应助甜美无剑采纳,获得10
15秒前
18秒前
科研通AI5应助悦耳的雨兰采纳,获得10
19秒前
20秒前
CodeCraft应助11122采纳,获得10
20秒前
20秒前
21秒前
22秒前
23秒前
深情安青应助mujin采纳,获得50
23秒前
24秒前
Harssi发布了新的文献求助10
24秒前
研友_LMg3PZ完成签到,获得积分10
24秒前
25秒前
吕耀炜发布了新的文献求助10
26秒前
Carmen发布了新的文献求助10
26秒前
26秒前
jungwoo123发布了新的文献求助10
26秒前
Lven发布了新的文献求助10
27秒前
shihui发布了新的文献求助10
27秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784104
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240907
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671248
邀请新用户注册赠送积分活动 800203
科研通“疑难数据库(出版商)”最低求助积分说明 759241