Early prediction of battery lifetime based on graphical features and convolutional neural networks

卷积神经网络 预言 模式识别(心理学) 计算机科学 特征(语言学) 人工智能 特征提取 电池(电) 数据挖掘 哲学 语言学 功率(物理) 物理 量子力学
作者
Ning He,Qiqi Wang,LU Zhen-feng,Yike Chai,Fangfang Yang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:353: 122048-122048 被引量:34
标识
DOI:10.1016/j.apenergy.2023.122048
摘要

Accurate lifetime prediction of lithium-ion batteries in the early cycles is critical for timely failure warning and effective quality grading. Convolutional neural network (CNN), with excellent performance in feature extraction, has gained increasingly attentions in battery prognostics. However, since degradation test normally takes years to complete, employing end-to-end CNNs directly for battery lifetime prediction is impractical due to the limited number of available training samples and the scarcity of features in the early cycles. Instead of directly feeding the raw data, in this work, we propose to use graphical features for early lifetime prediction. Three feature curves, including capacity-voltage curve, incremental capacity curve, and capacity difference curve are used to construct graphical features. Specifically, the incremental capacity curve and capacity difference curve are derived from capacity-voltage curve, aiming to extract more information from both intra-cycle and inter-cycle perspectives. The evolution patterns of these feature curves over the initial 100 cycles show evident correlations with battery lifetime, and are termed as the graphical features. The three graphical features, after some proper transformation, are stacked into a three-channel image before feeding to the CNN model. Five classical CNNs, with different structures and key parameters, are investigated for battery lifetime prediction. Comparative experiments are conducted to study the influence of different feature combinations, voltage segments, and discharge cycles on the prediction performance. Experimental results demonstrate that simple CNNs with only a few convolutional layers can achieve satisfying prediction results. Additionally, networks with rectified linear unit are shown to outperform those with other activation functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助端庄的连碧采纳,获得10
1秒前
落后醉易发布了新的文献求助10
1秒前
酷波er应助mmm4采纳,获得10
2秒前
小巧弘文完成签到,获得积分20
3秒前
lilili发布了新的文献求助10
5秒前
10秒前
科研通AI2S应助万灵竹采纳,获得10
10秒前
太空人发布了新的文献求助10
11秒前
丘比特应助THJ123采纳,获得10
11秒前
yga18完成签到,获得积分20
14秒前
mmm4发布了新的文献求助10
16秒前
Cicy完成签到,获得积分20
17秒前
17秒前
17秒前
复杂问筠完成签到 ,获得积分10
17秒前
qqshown发布了新的文献求助10
17秒前
田様应助misong采纳,获得10
19秒前
20秒前
咕噜咕噜噜熊完成签到,获得积分10
20秒前
内向忆南完成签到,获得积分10
20秒前
葱饼完成签到 ,获得积分10
22秒前
THJ123发布了新的文献求助10
22秒前
基础题发布了新的文献求助10
23秒前
万灵竹发布了新的文献求助20
25秒前
Hehe完成签到,获得积分10
27秒前
笨笨绿柳发布了新的文献求助10
27秒前
31秒前
清水发布了新的文献求助10
32秒前
Ava应助有热心愿意采纳,获得10
32秒前
脑洞疼应助有热心愿意采纳,获得10
32秒前
小v的格洛米完成签到,获得积分10
36秒前
司徒文青应助信仰采纳,获得30
36秒前
打打应助zjw采纳,获得10
36秒前
37秒前
yga18发布了新的文献求助30
38秒前
41秒前
打打应助Yolo采纳,获得10
47秒前
47秒前
科研通AI2S应助火星上仰采纳,获得30
47秒前
高冷难神发布了新的文献求助10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440