计算机科学
朴素贝叶斯分类器
人工智能
预处理器
点(几何)
机器学习
支持向量机
文本挖掘
k-最近邻算法
数据预处理
决策树
监督学习
数据挖掘
自然语言处理
情报检索
人工神经网络
数学
几何学
作者
Nisar Ahmad Kangoo,Apash Roy
出处
期刊:Algorithms for intelligent systems
日期:2023-01-01
卷期号:: 651-661
标识
DOI:10.1007/978-981-99-4626-6_53
摘要
Most of the data available today are in the form of text. This text data can be very useful and this is the point where text mining comes into the picture. Proper text mining can convert unstructured text data into useful data resources. This paper has tried to provide an overview of text classification with references to supervised learning classifiers. Various datasets, text preprocessing, algorithms, and evaluation techniques used in text classification with emphasis on Naïve Bayes, support vector machine, decision trees, K-nearest neighbor algorithms, and their advantages and disadvantages have been briefly discussed in this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI