CLIPC: Contrastive-Learning-Based Radar Signal Intrapulse Clustering

计算机科学 聚类分析 雷达 信号(编程语言) 信号处理 雷达信号处理 语音识别 人工智能 模式识别(心理学) 电信 程序设计语言
作者
Zilong Wu,Weinan Cao,Daping Bi,Jifei Pan
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (7): 11930-11944
标识
DOI:10.1109/jiot.2023.3332743
摘要

The radar signal intrapulse clustering (RSIPC) can help achieve unsupervised radar emitter identification, which is of great significance in the field of electronic warfare. In order to address the poor performance of traditional clustering methods in handling RSIPC tasks, we propose a contrastive learning-based RSIPC method called CLIPC. Since the single-domain information of radar signal intrapulses may result in the loss of important features, we integrate the multidomain information of radar signal intrapulses to obtain information fusion samples. By training a contrastive learning network on these information fusion samples, the network can extract deep features of radar signal intrapulses. Subsequently, we realize RSIPC using these deep features. To enhance the adaptability of the used contrastive learning network, we optimize the data augmentation methods in the network through experimental analysis. Additionally, we optimize the dimension of the deep features extracted by the network to reduce information redundancy and improve the efficiency of features clustering. Experimental results demonstrate that our improvements in contrastive learning network lead to better clustering performance and efficiency. We also investigate the clustering performance and reliability of the CLIPC under different signal-to-noise ratios (SNRs) through experiments. When the SNR is 0 dB, the proposed method has a clustering accuracy that is 0.1 higher than the contrastive learning method based on single-domain information, 0.3 higher than the traditional clustering method, and 0.2 higher than the clustering method based on autoencoder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
4秒前
王千鹤完成签到,获得积分20
5秒前
ljkshr完成签到,获得积分10
5秒前
cindy发布了新的文献求助10
7秒前
天真的迎天完成签到,获得积分10
8秒前
8秒前
Jake完成签到,获得积分10
11秒前
Dennis发布了新的文献求助10
11秒前
七七八八完成签到,获得积分10
11秒前
科研通AI5应助沐雨橙风采纳,获得10
12秒前
咔酱发布了新的文献求助10
12秒前
13秒前
13秒前
lilili完成签到,获得积分10
14秒前
小蘑菇应助嘻嘻嘻采纳,获得10
16秒前
yc发布了新的文献求助10
17秒前
yang完成签到,获得积分10
17秒前
Airy完成签到,获得积分10
18秒前
罐装冰块完成签到,获得积分10
20秒前
Lijunjie发布了新的文献求助10
22秒前
今天吃烧麦了吗完成签到,获得积分10
23秒前
23秒前
26秒前
27秒前
完美世界应助学术laji采纳,获得10
27秒前
28秒前
29秒前
29秒前
31秒前
所所应助大气的新之采纳,获得10
32秒前
热心市民应助仙笛童神采纳,获得10
32秒前
32秒前
33秒前
XLC发布了新的文献求助10
33秒前
一一应助早睡早起采纳,获得10
33秒前
36秒前
37秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799773
求助须知:如何正确求助?哪些是违规求助? 3345093
关于积分的说明 10323514
捐赠科研通 3061617
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807090
科研通“疑难数据库(出版商)”最低求助积分说明 763462