Transformer with convolution and graph-node co-embedding: An accurate and interpretable vision backbone for predicting gene expressions from local histopathological image

可解释性 计算机科学 人工智能 预处理器 模式识别(心理学) 嵌入 图形 卷积神经网络 数据挖掘 理论计算机科学
作者
Xiao Xiao,Yan Kong,Rong-Han Li,Zuoheng Wang,Hui Lü
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 103040-103040 被引量:9
标识
DOI:10.1016/j.media.2023.103040
摘要

Inferring gene expressions from histopathological images has long been a fascinating yet challenging task, primarily due to the substantial disparities between the two modality. Existing strategies using local or global features of histological images are suffering model complexity, GPU consumption, low interpretability, insufficient encoding of local features, and over-smooth prediction of gene expressions among neighboring sites. In this paper, we develop TCGN (Transformer with Convolution and Graph-Node co-embedding method) for gene expression estimation from H&E-stained pathological slide images. TCGN comprises a combination of convolutional layers, transformer encoders, and graph neural networks, and is the first to integrate these blocks in a general and interpretable computer vision backbone. Notably, TCGN uniquely operates with just a single spot image as input for histopathological image analysis, simplifying the process while maintaining interpretability. We validate TCGN on three publicly available spatial transcriptomic datasets. TCGN consistently exhibited the best performance (with median PCC 0.232). TCGN offers superior accuracy while keeping parameters to a minimum (just 86.241 million), and it consumes minimal memory, allowing it to run smoothly even on personal computers. Moreover, TCGN can be extended to handle bulk RNA-seq data while providing the interpretability. Enhancing the accuracy of omics information prediction from pathological images not only establishes a connection between genotype and phenotype, enabling the prediction of costly-to-measure biomarkers from affordable histopathological images, but also lays the groundwork for future multi-modal data modeling. Our results confirm that TCGN is a powerful tool for inferring gene expressions from histopathological images in precision health applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
安安完成签到,获得积分20
6秒前
7秒前
12秒前
NEAU小孩儿发布了新的文献求助10
13秒前
天天快乐应助guozizi采纳,获得10
13秒前
15秒前
YHF2完成签到,获得积分10
15秒前
安陌煜发布了新的文献求助10
17秒前
研友_LJGpan完成签到,获得积分10
19秒前
71发布了新的文献求助10
20秒前
NEAU小孩儿完成签到,获得积分20
21秒前
炫潮浪子完成签到,获得积分10
23秒前
23秒前
科研通AI5应助香蕉新筠采纳,获得10
24秒前
71完成签到,获得积分10
25秒前
Ava应助Aliya采纳,获得10
26秒前
zjz发布了新的文献求助10
30秒前
33秒前
35秒前
zjz完成签到,获得积分10
36秒前
香蕉新筠发布了新的文献求助10
37秒前
忧伤的慕梅完成签到 ,获得积分10
38秒前
包佳梁完成签到,获得积分10
39秒前
秀丽笑容发布了新的文献求助10
40秒前
41秒前
42秒前
43秒前
44秒前
smash发布了新的文献求助10
44秒前
安陌煜发布了新的文献求助10
46秒前
魔幻沛菡发布了新的文献求助30
47秒前
传奇3应助smash采纳,获得10
49秒前
芷莯发布了新的文献求助10
50秒前
大个应助ZZH采纳,获得10
51秒前
51秒前
小白完成签到,获得积分10
52秒前
ophcyl完成签到,获得积分10
52秒前
hqq关注了科研通微信公众号
53秒前
洁净磬发布了新的文献求助10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782096
求助须知:如何正确求助?哪些是违规求助? 3327562
关于积分的说明 10232109
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799585
科研通“疑难数据库(出版商)”最低求助积分说明 758825