亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RamanCMP: A Raman spectral classification acceleration method based on lightweight model and model compression techniques

人工智能 卷积神经网络 拉曼光谱 提取器 线性判别分析 模式识别(心理学) 化学 计算机科学 工艺工程 光学 物理 工程类
作者
Zengyun Gong,Chen Chen,Cheng Chen,Chenxi Li,Xuecong Tian,Zhongcheng Gong,Xiaoyi Lv
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1278: 341758-341758 被引量:4
标识
DOI:10.1016/j.aca.2023.341758
摘要

In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data. To further optimize deep learning models applied to Raman spectroscopy, in this study time, accuracy, sensitivity, specificity and floating point operations numbers(FLOPs) are used as evaluation metrics to optimize the model, which is named RamanCompact(RamanCMP). The experimental data used in this research are selected from the RRUFF public dataset, which consists of 723 Raman spectroscopy data samples from 10 different mineral categories. In this paper, 1D-EfficientNet adapted to the spectral data as well as 1D-DRSN are proposed to improve the model classification accuracy. To achieve better classification accuracy while optimizing the time parameters, three model compression methods are designed: knowledge distillation using 1D-EfficientNet model as a teacher model to train convolutional neural networks(CNN), proposing a channel conversion method to optimize 1D-DRSN model, and using 1D-DRSN model as a feature extractor in combination with linear discriminant analysis(LDA) model for classification. Compared with the traditional LDA and CNN models, the accuracy of 1D-EfficientNet and 1D-DRSN is improved by more than 20%. The time of the distilled model is reduced by 9680.9s compared with the teacher model 1D-EfficientNet under the condition of losing 2.07% accuracy. The accuracy of the distilled model is improved by 20% compared to the CNN student model while keeping inference efficiency constant. The 1D-DRSN optimized with channel conversion method saves 60% inference time of the original 1D-DRSN model. Feature extraction reduces the inference time of 1D-DRSN model by 93% with 94.48% accuracy. This study innovatively combines lightweight models and model compression algorithms to improve the classification speed of deep learning models in the field of Raman spectroscopy, forming a complete set of analysis methods and laying the foundation for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
27秒前
35秒前
Echoheart完成签到,获得积分10
35秒前
郭星星完成签到,获得积分10
48秒前
大个应助甜茶采纳,获得10
1分钟前
1分钟前
甜茶发布了新的文献求助10
1分钟前
科目三应助khan采纳,获得10
1分钟前
1分钟前
李阳完成签到 ,获得积分10
1分钟前
khan发布了新的文献求助10
1分钟前
lalalatiancai发布了新的文献求助10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
躺不平也卷不动的瓜子完成签到 ,获得积分10
2分钟前
lalalatiancai完成签到,获得积分20
2分钟前
IShowSpeed完成签到,获得积分10
2分钟前
草木完成签到 ,获得积分10
2分钟前
852应助Takahara2000采纳,获得10
2分钟前
所所应助彩色的沛凝采纳,获得10
2分钟前
2分钟前
彩色的沛凝完成签到,获得积分10
2分钟前
3分钟前
Takahara2000完成签到,获得积分10
3分钟前
甜茶发布了新的文献求助20
3分钟前
hugeyoung完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
迷路平安发布了新的文献求助10
4分钟前
执着南琴完成签到,获得积分10
4分钟前
4分钟前
4分钟前
jumbaumba完成签到,获得积分10
5分钟前
GIA完成签到,获得积分10
5分钟前
5分钟前
少川完成签到 ,获得积分10
5分钟前
烨枫晨曦完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173515
求助须知:如何正确求助?哪些是违规求助? 4363333
关于积分的说明 13585346
捐赠科研通 4211793
什么是DOI,文献DOI怎么找? 2309979
邀请新用户注册赠送积分活动 1309119
关于科研通互助平台的介绍 1256466