Gas-Phase Odorant Fast Quantification by Odor Biosensor Based on Reference Response Model

气味 生物系统 生物传感器 非线性系统 强度(物理) 计算机科学 灵敏度(控制系统) 人工智能 化学 材料科学 电子工程 工程类 生物 物理 纳米技术 有机化学 量子力学
作者
Hongchao Deng,Hidefumi Mitsuno,Ryohei Kanzaki,S Nomoto,Takamichi Nakamoto
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (20): 24169-24178 被引量:3
标识
DOI:10.1109/jsen.2023.3309968
摘要

Gas-phase odor biosensors based on cells expressing olfactory receptors (ORs) show favorable detection characteristics. These biosensors, however, suffer nonlinearity, drift, and aging problems. We previously developed an active sensing method to solve those problems but it took relatively long time to obtain a final result. Here, we have developed a gas-phase odorant fast quantification method to speed up the quantification procedure. The odor intensity was controlled by the stimulation duration and the experiment target was to quantify an unknown intensity. We first focused on the odorant geosmin, and obtained a standard response model by curve fitting with the response data from several odor intensities. This model was used to calculate an unknown odor intensity thus solving the nonlinear issue. During the experiment, known and unknown odor stimulations were alternately supplied. The biosensor response was calibrated based on the known odor stimulation response, thereby overcoming the drift and aging problems. Fast quantification was successfully achieved in 400 s which was much faster than previous research. Furthermore, we studied the effect of stimulation interval on quantification accuracy. Moreover, we presented a skip-enable fast quantification approach which increased the sampling rate especially when the odor stimulation was sparse. In addition, the feasibility of fast quantification method was verified again on odorant 1-octen-3-ol. The fast quantification method demonstrated in this study will benefit the practical application of gas-phase odor biosensors, particularly for variable target odorants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cl发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
He完成签到,获得积分10
3秒前
CYYDNDB完成签到 ,获得积分10
5秒前
hbhbj发布了新的文献求助10
6秒前
英勇羿发布了新的文献求助10
8秒前
优美靖柏发布了新的文献求助10
9秒前
9秒前
9秒前
耿宇航发布了新的文献求助10
10秒前
烟花应助Narcissus采纳,获得10
11秒前
11秒前
南瓜饼完成签到,获得积分10
12秒前
小马甲应助SinaiPen采纳,获得10
13秒前
35号发光体完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
陈冲完成签到,获得积分10
14秒前
15秒前
拼搏冬瓜发布了新的文献求助10
15秒前
司忆完成签到 ,获得积分10
15秒前
17秒前
17秒前
20秒前
LOWRY发布了新的文献求助10
21秒前
木木发布了新的文献求助10
23秒前
23秒前
123完成签到,获得积分10
25秒前
27秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
核桃应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得30
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451545
求助须知:如何正确求助?哪些是违规求助? 4559250
关于积分的说明 14273049
捐赠科研通 4483252
什么是DOI,文献DOI怎么找? 2455424
邀请新用户注册赠送积分活动 1446214
关于科研通互助平台的介绍 1422263