Fatty Acid Oxidation Mediated by Malonyl-CoA Decarboxylase Represses Renal Cell Carcinoma Progression

β氧化 脂肪酸 脂肪酸合成 肾透明细胞癌 脂肪酸代谢 脂肪酸合酶 脂质代谢 生物 分解代谢 生物化学 化学 癌症研究 新陈代谢 内科学 肾细胞癌 医学
作者
Lijie Zhou,Yongbo Luo,Yuenan Liu,Youmiao Zeng,Junwei Tong,Mengting Li,Yaxin Hou,Kaixuan Du,Yabin Qi,Wenbang Pan,Y F Liu,Rongli Wang,Fengyan Tian,Chaohui Gu,Ke Chen
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (23): 3920-3939 被引量:22
标识
DOI:10.1158/0008-5472.can-23-0969
摘要

Abstract Fatty acid metabolism reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Increased lipid storage supports ccRCC progression, highlighting the importance of understanding the molecular mechanisms driving altered fatty acid synthesis in tumors. Here, we identified that malonyl-CoA decarboxylase (MLYCD), a key regulator of fatty acid anabolism, was downregulated in ccRCC, and low expression correlated with poor prognosis in patients. Restoring MLYCD expression in ccRCC cells decreased the content of malonyl CoA, which blocked de novo fatty acid synthesis and promoted fatty acid translocation into mitochondria for oxidation. Inhibition of lipid droplet accumulation induced by MLYCD-mediated fatty acid oxidation disrupted endoplasmic reticulum and mitochondrial homeostasis, increased reactive oxygen species levels, and induced ferroptosis. Moreover, overexpressing MLYCD reduced tumor growth and reversed resistance to sunitinib in vitro and in vivo. Mechanistically, HIF2α inhibited MLYCD translation by upregulating expression of eIF4G3 microexons. Together, this study demonstrates that fatty acid catabolism mediated by MLYCD disrupts lipid homeostasis to repress ccRCC progression. Activating MLYCD-mediated fatty acid metabolism could be a promising therapeutic strategy for treating ccRCC. Significance: MLYCD deficiency facilitates fatty acid synthesis and lipid droplet accumulation to drive progression of renal cell carcinoma, indicating inducing MYLCD as a potential approach to reprogram fatty acid metabolism in kidney cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
852应助雨荷采纳,获得10
3秒前
shishishiya完成签到,获得积分10
4秒前
章铭-111发布了新的文献求助200
5秒前
7秒前
7秒前
领导范儿应助Jayce采纳,获得10
8秒前
师霸发布了新的文献求助10
8秒前
79完成签到,获得积分10
8秒前
sunny发布了新的文献求助10
10秒前
10秒前
明亮沁发布了新的文献求助10
11秒前
11秒前
11完成签到 ,获得积分10
12秒前
12秒前
13秒前
YAN完成签到,获得积分10
13秒前
13秒前
李爱国应助诚心秋珊采纳,获得10
14秒前
Lynn完成签到,获得积分10
14秒前
万能图书馆应助LayM采纳,获得10
14秒前
miaoquan完成签到,获得积分10
15秒前
16秒前
最爱松子完成签到 ,获得积分10
16秒前
哈哈发布了新的文献求助10
16秒前
TIAOTIAO完成签到,获得积分10
17秒前
why发布了新的文献求助10
17秒前
17秒前
Young完成签到 ,获得积分10
17秒前
Threeeeeee发布了新的文献求助10
18秒前
雨荷发布了新的文献求助10
19秒前
刻苦秋尽发布了新的文献求助30
19秒前
20秒前
JamesPei应助YAOYAO采纳,获得10
20秒前
pp777完成签到 ,获得积分10
20秒前
20秒前
lyre完成签到,获得积分10
21秒前
22秒前
Threeeeeee完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283991
求助须知:如何正确求助?哪些是违规求助? 4437666
关于积分的说明 13814361
捐赠科研通 4318525
什么是DOI,文献DOI怎么找? 2370470
邀请新用户注册赠送积分活动 1365857
关于科研通互助平台的介绍 1329316