自回归模型
数学
估计员
系列(地层学)
可解释性
应用数学
基质(化学分析)
星型
SETAR公司
双线性插值
时间序列
非线性自回归外生模型
自回归积分移动平均
数学优化
统计
计算机科学
生物
机器学习
古生物学
复合材料
材料科学
摘要
In this article, we develop additive autoregressive models (Add‐ARM) for the time series data with matrix valued predictors. The proposed models assume separable row, column and lag effects of the matrix variables, attaining stronger interpretability when compared with existing bilinear matrix autoregressive models. We utilize the Gershgorin's circle theorem to impose some certain conditions on the parameter matrices, which make the underlying process strictly stationary. We also introduce the alternating least squares estimation method to solve the involved equality constrained optimization problems. Asymptotic distributions of the parameter estimators are derived. In addition, we employ hypothesis tests to run diagnostics on the parameter matrices. The performance of the proposed models and methods is further demonstrated through simulations and real data analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI