Deep Learning-Enabled Morphometric Analysis for Toxicity Screening Using Zebrafish Larvae

斑马鱼 生物 污染物 人工智能 计算机科学 生态学 遗传学 基因
作者
Gongqing Dong,Nan Wang,Ting Xu,Jingyu Liang,Ruxia Qiao,Daqiang Yin,Sijie Lin
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18127-18138 被引量:22
标识
DOI:10.1021/acs.est.3c00593
摘要

Toxicology studies heavily rely on morphometric analysis to detect abnormalities and diagnose disease processes. The emergence of ever-increasing varieties of environmental pollutants makes it difficult to perform timely assessments, especially using in vivo models. Herein, we propose a deep learning-based morphometric analysis (DLMA) to quantitatively identify eight abnormal phenotypes (head hemorrhage, jaw malformation, uninflated swim bladder, pericardial edema, yolk edema, bent spine, dead, unhatched) and eight vital organ features (eye, head, jaw, heart, yolk, swim bladder, body length, and curvature) of zebrafish larvae. A data set composed of 2532 bright-field micrographs of zebrafish larvae at 120 h post fertilization was generated from toxicity screening of three categories of chemicals, i.e., endocrine disruptors (perfluorooctanesulfonate and bisphenol A), heavy metals (CdCl2 and PbI2), and emerging organic pollutants (acetaminophen, 2,7-dibromocarbazole, 3-monobromocarbazo, 3,6-dibromocarbazole, and 1,3,6,8-tetrabromocarbazo). Two typical deep learning models, one-stage and two-stage models (TensorMask, Mask R-CNN), were trained to implement phenotypic feature classification and segmentation. The accuracy was statistically validated with a mean average precision >0.93 in unlabeled data sets and a mean accuracy >0.86 in previously published data sets. Such a method effectively enables subjective morphometric analysis of zebrafish larvae to achieve efficient hazard identification of both chemicals and environmental pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Qyyy完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
慕青应助西西弗斯采纳,获得30
5秒前
量子星尘发布了新的文献求助10
6秒前
萱萱发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
8秒前
秋日思语完成签到,获得积分10
9秒前
思源应助儒雅的天川采纳,获得10
10秒前
嘟噜发布了新的文献求助10
10秒前
Pooh完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
莉莉发布了新的文献求助10
13秒前
vvA11应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
支珩应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
隐形曼青应助雪碧采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
高分求助中
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
MATLAB在电子信息类专业中的应用 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4213109
求助须知:如何正确求助?哪些是违规求助? 3747372
关于积分的说明 11790326
捐赠科研通 3414665
什么是DOI,文献DOI怎么找? 1873895
邀请新用户注册赠送积分活动 928156
科研通“疑难数据库(出版商)”最低求助积分说明 837480