A shallow mirror transformer for subject-independent motor imagery BCI

运动表象 脑-机接口 判别式 计算机科学 脑电图 人工智能 变压器 语音识别 模式识别(心理学) 可视化 心理学 工程类 神经科学 电压 电气工程
作者
Jing Luo,Yaojie Wang,S.-L. Xia,Na Lu,Xiaoyong Ren,Zhenghao Shi,Xinhong Hei
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107254-107254 被引量:10
标识
DOI:10.1016/j.compbiomed.2023.107254
摘要

Motor imagery BCI plays an increasingly important role in motor disorders rehabilitation. However, the position and duration of the discriminative segment in an EEG trial vary from subject to subject and even trial to trial, and this leads to poor performance of subject-independent motor imagery classification. Thus, determining how to detect and utilize the discriminative signal segments is crucial for improving the performance of subject-independent motor imagery BCI.In this paper, a shallow mirror transformer is proposed for subject-independent motor imagery EEG classification. Specifically, a multihead self-attention layer with a global receptive field is employed to detect and utilize the discriminative segment from the entire input EEG trial. Furthermore, the mirror EEG signal and the mirror network structure are constructed to improve the classification precision based on ensemble learning. Finally, the subject-independent setup was used to evaluate the shallow mirror transformer on motor imagery EEG signals from subjects existing in the training set and new subjects.The experiments results on BCI Competition IV datasets 2a and 2b and the OpenBMI dataset demonstrated the promising effectiveness of the proposed shallow mirror transformer. The shallow mirror transformer obtained average accuracies of 74.48% and 76.1% for new subjects and existing subjects, respectively, which were highest among the compared state-of-the-art methods. In addition, visualization of the attention score showed the ability of discriminative EEG segment detection. This paper demonstrated that multihead self-attention is effective in capturing global EEG signal information in motor imagery classification.This study provides an effective model based on a multihead self-attention layer for subject-independent motor imagery-based BCIs. To the best of our knowledge, this is the shallowest transformer model available, in which a small number of parameters promotes the performance in motor imagery EEG classification for such a small sample problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BMX5完成签到,获得积分10
刚刚
Xiaoyan发布了新的文献求助10
刚刚
刚刚
于富强发布了新的文献求助10
1秒前
Pytong发布了新的文献求助20
1秒前
ggg发布了新的文献求助10
2秒前
3秒前
华仔应助corner采纳,获得10
3秒前
3秒前
狗狗完成签到 ,获得积分10
4秒前
PP发布了新的文献求助10
5秒前
念兮完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
雨天慢行发布了新的文献求助10
7秒前
荷包蛋完成签到,获得积分20
8秒前
cellur完成签到,获得积分10
8秒前
傲喆完成签到,获得积分20
8秒前
9秒前
个性尔槐完成签到,获得积分10
10秒前
El发布了新的文献求助10
10秒前
万能图书馆应助安详向薇采纳,获得10
10秒前
唐泽雪穗应助PP采纳,获得10
10秒前
11秒前
12秒前
超帅的口红完成签到,获得积分10
12秒前
荷包蛋发布了新的文献求助10
12秒前
12秒前
今后应助不再方里采纳,获得10
12秒前
其11发布了新的文献求助10
13秒前
14秒前
善学以致用应助Pytong采纳,获得10
14秒前
七月不看海完成签到,获得积分10
15秒前
BMX5发布了新的文献求助30
15秒前
15秒前
15秒前
cosmos完成签到 ,获得积分20
16秒前
16秒前
烟花应助张zh采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061798
求助须知:如何正确求助?哪些是违规求助? 4285762
关于积分的说明 13355425
捐赠科研通 4103625
什么是DOI,文献DOI怎么找? 2246823
邀请新用户注册赠送积分活动 1252546
关于科研通互助平台的介绍 1183447