生物
表观遗传学
表观遗传学
计算生物学
多发性骨髓瘤
转录组
遗传学
染色质
DNA甲基化
拷贝数分析
癌症的体细胞进化
基因组
癌症研究
癌症
DNA
拷贝数变化
基因
免疫学
基因表达
作者
Alexandra M. Poos,Nina Prokoph,Moritz J. Przybilla,Jan‐Philipp Mallm,Simon Steiger,Isabelle Seufert,Lukas John,Stephan M. Tirier,Katharina Bauer,Anja Baumann,Jennifer Rohleder,Umair Munawar,Leo Rasche,K. Martin Kortüm,Nicola Giesen,Philipp Reichert,Stefanie Huhn,Carsten Müller‐Tidow,Hartmut Goldschmidt,Oliver Stegle,Marc S. Raab,Karsten Rippe,Niels Weinhold
出处
期刊:Blood
[Elsevier BV]
日期:2023-06-30
卷期号:142 (19): 1633-1646
被引量:21
标识
DOI:10.1182/blood.2023019758
摘要
Intratumor heterogeneity as a clinical challenge becomes most evident after several treatment lines, when multidrug-resistant subclones accumulate. To address this challenge, the characterization of resistance mechanisms at the subclonal level is key to identify common vulnerabilities. In this study, we integrate whole-genome sequencing, single-cell (sc) transcriptomics (scRNA sequencing), and chromatin accessibility (scATAC sequencing) together with mitochondrial DNA mutations to define subclonal architecture and evolution for longitudinal samples from 15 patients with relapsed or refractory multiple myeloma. We assess transcriptomic and epigenomic changes to resolve the multifactorial nature of therapy resistance and relate it to the parallel occurrence of different mechanisms: (1) preexisting epigenetic profiles of subclones associated with survival advantages, (2) converging phenotypic adaptation of genetically distinct subclones, and (3) subclone-specific interactions of myeloma and bone marrow microenvironment cells. Our study showcases how an integrative multiomics analysis can be applied to track and characterize distinct multidrug-resistant subclones over time for the identification of molecular targets against them.
科研通智能强力驱动
Strongly Powered by AbleSci AI