A Reinforcement Learning Approach for Flexible Job Shop Scheduling Problem With Crane Transportation and Setup Times

计算机科学 强化学习 作业车间调度 加权 调度(生产过程) 数学优化 人工智能 地铁列车时刻表 数学 医学 放射科 操作系统
作者
Yu Du,Junqing Li,Chengdong Li,Peiyong Duan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5695-5709 被引量:73
标识
DOI:10.1109/tnnls.2022.3208942
摘要

Flexible job shop scheduling problem (FJSP) has attracted research interests as it can significantly improve the energy, cost, and time efficiency of production. As one type of reinforcement learning, deep Q-network (DQN) has been applied to solve numerous realistic optimization problems. In this study, a DQN model is proposed to solve a multiobjective FJSP with crane transportation and setup times (FJSP-CS). Two objectives, i.e., makespan and total energy consumption, are optimized simultaneously based on weighting approach. To better reflect the problem realities, eight different crane transportation stages and three typical machine states including processing, setup, and standby are investigated. Considering the complexity of FJSP-CS, an identification rule is designed to organize the crane transportation in solution decoding. As for the DQN model, 12 state features and seven actions are designed to describe the features in the scheduling process. A novel structure is applied in the DQN topology, saving the calculation resources and improving the performance. In DQN training, double deep Q-network technique and soft target weight update strategy are used. In addition, three reported improvement strategies are adopted to enhance the solution qualities by adjusting scheduling assignments. Extensive computational tests and comparisons demonstrate the effectiveness and advantages of the proposed method in solving FJSP-CS, where the DQN can choose appropriate dispatching rules at various scheduling situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Medicovv采纳,获得10
1秒前
沈沈发布了新的文献求助10
2秒前
5秒前
汉堡包应助尚尚采纳,获得10
5秒前
7秒前
不倦应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
ZhouYW应助科研通管家采纳,获得10
8秒前
Summertrain应助科研通管家采纳,获得20
8秒前
不倦应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
ZhouYW应助科研通管家采纳,获得10
8秒前
8秒前
w_tiger完成签到 ,获得积分10
9秒前
江桥发布了新的文献求助10
10秒前
kkm发布了新的文献求助10
10秒前
FashionBoy应助哈哈哈哈哈采纳,获得10
10秒前
星辰完成签到,获得积分10
12秒前
无花果应助123456MMMYYY采纳,获得10
12秒前
12秒前
鱼头星星发布了新的文献求助10
13秒前
14秒前
15秒前
木子铁完成签到 ,获得积分10
16秒前
春风知我意完成签到,获得积分10
16秒前
尚尚发布了新的文献求助10
16秒前
大模型应助王者归来采纳,获得10
18秒前
19秒前
123发布了新的文献求助20
20秒前
22秒前
传奇3应助Violet采纳,获得30
23秒前
万能图书馆应助文献互助1采纳,获得10
24秒前
慕青应助星辰采纳,获得10
25秒前
王淳发布了新的文献求助10
26秒前
李健的粉丝团团长应助11采纳,获得10
27秒前
31秒前
尚尚完成签到,获得积分10
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797534
求助须知:如何正确求助?哪些是违规求助? 3342906
关于积分的说明 10313987
捐赠科研通 3059618
什么是DOI,文献DOI怎么找? 1679037
邀请新用户注册赠送积分活动 806288
科研通“疑难数据库(出版商)”最低求助积分说明 763078