UPLP-SLAM: Unified point-line-plane feature fusion for RGB-D visual SLAM

人工智能 计算机科学 计算机视觉 特征(语言学) 同时定位和映射 直线(几何图形) 点(几何) RGB颜色模型 平面(几何) 姿势 线段 匹配(统计) 像面 移动机器人 数学 机器人 图像(数学) 几何学 语言学 统计 哲学
作者
Haozhi Yang,Jing Yuan,Yuanxi Gao,Xingyu Sun,Xuebo Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:96: 51-65 被引量:29
标识
DOI:10.1016/j.inffus.2023.03.006
摘要

Most of the existing RGB-D simultaneous localization and mapping (SLAM) systems are based on point features or point-line features or point-plane features. However, the existing multi- feature fusion SLAM methods based on the filter framework are not accurate and robust. And the fusion methods based on the optimization framework process different kinds of features separately and integrate them loosely. In the optimization-based framework, how to tightly fuse various kinds of features for achieving more accurate and robust pose estimation has been rarely considered. In this paper, we propose a unified point-line-plane fusion RGB-D visual SLAM method for navigation of mobile robots in structured environments, making full use of the information of three kinds of geometric features. Specifically, it extracts point, line, and plane features using images captured by the RGB-D camera and expresses them in a uniform way. Then, a mutual association scheme is designed for data association of point, line and plane features, which not only considers the correspondence of homogeneous features, i.e., point-point, line-line and plane-plane pairs, but also includes the association of heterogeneous features, i.e., point- line, point-plane and line-plane pairs. Afterwards, the matching errors between homogeneous features and the association errors between heterogeneous features are uniformly represented and jointly optimized to estimate the camera pose and feature parameters for accurate and consistent localization and map building. It is worth pointing out that the proposed unified framework contains two levels. From the system framework perspective, all the main components of the SLAM system, i.e., feature representation, feature association and error function are handled in a unified manner, which increases the accuracy and compactness of the multi-feature SLAM system. From the feature processing perspective, both homogeneous features and heterogeneous features are uniformly used, which provides more spatial constraints on pose estimation. Finally, the accuracy and robustness of the proposed method are verified by experiment comparisons with state-of-the-art visual SLAM systems on public datasets and in real-world environments
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
咸蛋黄蘸酱完成签到,获得积分10
刚刚
随便起个吧完成签到 ,获得积分10
刚刚
俊秀的思山完成签到,获得积分10
1秒前
gzy完成签到,获得积分10
1秒前
隔水一路秋完成签到,获得积分10
1秒前
心悦SCI完成签到,获得积分10
2秒前
刘亮亮完成签到,获得积分10
3秒前
ccx完成签到,获得积分10
3秒前
可爱的函函应助mblck采纳,获得30
3秒前
不秃燃的小老弟完成签到 ,获得积分10
4秒前
4秒前
开心惜梦完成签到,获得积分10
4秒前
科目三应助Ray采纳,获得10
5秒前
忧心的峻熙完成签到,获得积分10
5秒前
aaaaaa完成签到,获得积分10
6秒前
俞定尚心才可心完成签到 ,获得积分10
6秒前
马儿饿了要吃草完成签到,获得积分10
7秒前
mao完成签到 ,获得积分10
7秒前
郝雨竹郝雨竹完成签到 ,获得积分10
8秒前
小唐完成签到,获得积分10
9秒前
文献高手完成签到 ,获得积分10
10秒前
枫枫829完成签到 ,获得积分10
10秒前
彭于晏应助猪猪hero采纳,获得10
12秒前
13秒前
开心谷秋完成签到,获得积分10
13秒前
开朗冬萱完成签到 ,获得积分10
13秒前
归于晏完成签到,获得积分10
13秒前
大力向南完成签到,获得积分10
14秒前
14秒前
guoli完成签到,获得积分10
14秒前
栋仔完成签到,获得积分10
15秒前
Ray完成签到,获得积分10
15秒前
Ray发布了新的文献求助10
19秒前
wxx完成签到,获得积分10
19秒前
细心妙菡完成签到 ,获得积分10
20秒前
20秒前
墨瞳完成签到,获得积分10
23秒前
尚影芷完成签到,获得积分10
23秒前
吃一口芝士完成签到 ,获得积分10
24秒前
l37u2n发布了新的文献求助10
24秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503538
求助须知:如何正确求助?哪些是违规求助? 4598913
关于积分的说明 14465126
捐赠科研通 4532754
什么是DOI,文献DOI怎么找? 2484105
邀请新用户注册赠送积分活动 1467327
关于科研通互助平台的介绍 1440219