Predicting muscle invasion in bladder cancer based on MRI: A comparison of radiomics, and single-task and multi-task deep learning

队列 接收机工作特性 人工智能 医学 膀胱癌 无线电技术 机器学习 计算机科学 任务(项目管理) 成对比较 癌症 病理 内科学 经济 管理
作者
Jianpeng Li,Zhengxuan Qiu,Kangyang Cao,Lei Deng,Weijing Zhang,Chuanmiao Xie,Shuiqing Yang,Peiyan Yue,Jian Zhong,Jiegeng Lyu,Xiang Huang,Kunlin Zhang,Yujian Zou,Bingsheng Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:233: 107466-107466 被引量:29
标识
DOI:10.1016/j.cmpb.2023.107466
摘要

Radiomics and deep learning are two popular technologies used to develop computer-aided detection and diagnosis schemes for analysing medical images. This study aimed to compare the effectiveness of radiomics, single-task deep learning (DL) and multi-task DL methods in predicting muscle-invasive bladder cancer (MIBC) status based on T2-weighted imaging (T2WI).A total of 121 tumours (93 for training, from Centre 1; 28 for testing, from Centre 2) were included. MIBC was confirmed with pathological examination. A radiomics model, a single-task model, and a multi-task model based on T2WI were constructed in the training cohort with five-fold cross-validation, and validation was conducted in the external test cohort. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of each model. DeLong's test and a permutation test were used to compare the performance of the models.The area under the ROC curve (AUC) values of the radiomics, single-task and multi-task models in the training cohort were: 0.920, 0.933 and 0.932, respectively; and were 0.844, 0.884 and 0.932, respectively, in the test cohort. The multi-task model achieved better performance in the test cohort than did the other models. No statistically significant differences in AUC values and Kappa coefficients were observed between pairwise models, in either the training or test cohorts. According to the Grad-CAM feature visualization results, the multi-task model focused more on the diseased tissue area in some samples of the test cohort compared with the single-task model.The T2WI-based radiomics, single-task, and multi-task models all exhibited good diagnostic performance in preoperatively predicting MIBC, in which the multi-task model had the best diagnostic performance. Compared with the radiomics method, our multi-task DL method had the advantage of saving time and effort. Compared with the single-task DL method, our multi-task DL method had the advantage of being more lesion-focused and more reliable for clinical reference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
xiamu完成签到 ,获得积分10
2秒前
4秒前
科研通AI5应助漂亮的从灵采纳,获得100
5秒前
Allen完成签到,获得积分10
6秒前
科研通AI5应助王志杰采纳,获得10
6秒前
oldlee发布了新的文献求助20
7秒前
qq596完成签到,获得积分10
8秒前
10秒前
Genius发布了新的文献求助10
11秒前
ding应助fu采纳,获得10
12秒前
Dai发布了新的文献求助30
13秒前
一定长发布了新的文献求助10
13秒前
木子发布了新的文献求助10
16秒前
英俊的铭应助宋梅玉采纳,获得10
16秒前
万能图书馆应助机智迎南采纳,获得10
17秒前
核桃发布了新的文献求助10
20秒前
22秒前
思源应助嘟噜采纳,获得10
22秒前
22秒前
25秒前
杨雨瑶关注了科研通微信公众号
26秒前
27秒前
小辛发布了新的文献求助10
27秒前
28秒前
量子星尘发布了新的文献求助10
29秒前
学吧完成签到,获得积分20
29秒前
32秒前
嘟噜发布了新的文献求助10
33秒前
wenwen发布了新的文献求助10
33秒前
核桃发布了新的文献求助10
36秒前
田様应助huangxq采纳,获得10
38秒前
boshi完成签到,获得积分10
39秒前
杨雨瑶发布了新的文献求助10
39秒前
oldlee完成签到,获得积分10
42秒前
luna完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助10
48秒前
50秒前
gnil发布了新的文献求助10
53秒前
情怀应助科研通管家采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 5000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4311484
求助须知:如何正确求助?哪些是违规求助? 3832448
关于积分的说明 11990976
捐赠科研通 3472488
什么是DOI,文献DOI怎么找? 1904094
邀请新用户注册赠送积分活动 950989
科研通“疑难数据库(出版商)”最低求助积分说明 852739