Predicting muscle invasion in bladder cancer based on MRI: A comparison of radiomics, and single-task and multi-task deep learning

队列 接收机工作特性 人工智能 医学 膀胱癌 无线电技术 机器学习 计算机科学 任务(项目管理) 成对比较 癌症 病理 内科学 经济 管理
作者
Jianpeng Li,Zhengxuan Qiu,Kangyang Cao,Lei Deng,Weijing Zhang,Chuanmiao Xie,Shuiqing Yang,Peiyan Yue,Jian Zhong,Jiegeng Lyu,Xiang Huang,Kunlin Zhang,Yujian Zou,Bingsheng Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:233: 107466-107466 被引量:21
标识
DOI:10.1016/j.cmpb.2023.107466
摘要

Radiomics and deep learning are two popular technologies used to develop computer-aided detection and diagnosis schemes for analysing medical images. This study aimed to compare the effectiveness of radiomics, single-task deep learning (DL) and multi-task DL methods in predicting muscle-invasive bladder cancer (MIBC) status based on T2-weighted imaging (T2WI).A total of 121 tumours (93 for training, from Centre 1; 28 for testing, from Centre 2) were included. MIBC was confirmed with pathological examination. A radiomics model, a single-task model, and a multi-task model based on T2WI were constructed in the training cohort with five-fold cross-validation, and validation was conducted in the external test cohort. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of each model. DeLong's test and a permutation test were used to compare the performance of the models.The area under the ROC curve (AUC) values of the radiomics, single-task and multi-task models in the training cohort were: 0.920, 0.933 and 0.932, respectively; and were 0.844, 0.884 and 0.932, respectively, in the test cohort. The multi-task model achieved better performance in the test cohort than did the other models. No statistically significant differences in AUC values and Kappa coefficients were observed between pairwise models, in either the training or test cohorts. According to the Grad-CAM feature visualization results, the multi-task model focused more on the diseased tissue area in some samples of the test cohort compared with the single-task model.The T2WI-based radiomics, single-task, and multi-task models all exhibited good diagnostic performance in preoperatively predicting MIBC, in which the multi-task model had the best diagnostic performance. Compared with the radiomics method, our multi-task DL method had the advantage of saving time and effort. Compared with the single-task DL method, our multi-task DL method had the advantage of being more lesion-focused and more reliable for clinical reference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助隐形黄蜂采纳,获得10
1秒前
梓越发布了新的文献求助10
1秒前
王一一完成签到,获得积分10
1秒前
刘宇博发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
Willer发布了新的文献求助10
3秒前
澍澍完成签到,获得积分20
4秒前
酷波er应助li采纳,获得30
4秒前
5秒前
子车立轩完成签到 ,获得积分10
5秒前
细腻慕儿完成签到 ,获得积分10
6秒前
荣惜完成签到 ,获得积分10
6秒前
依然完成签到,获得积分10
7秒前
cheer发布了新的文献求助10
8秒前
8秒前
9秒前
科研通AI5应助梦梦采纳,获得10
11秒前
米玄完成签到,获得积分10
11秒前
英姑应助酷酷冰之采纳,获得10
12秒前
12秒前
13秒前
14秒前
ddd发布了新的文献求助10
14秒前
allllllll完成签到,获得积分10
16秒前
曼凡发布了新的文献求助10
16秒前
认真的梦柏完成签到,获得积分10
17秒前
嘎嘎发布了新的文献求助10
18秒前
cai完成签到,获得积分10
20秒前
烟花应助渣渣儿采纳,获得10
20秒前
dslnfakjnij完成签到 ,获得积分10
24秒前
聂先生完成签到,获得积分10
24秒前
潇潇雨歇发布了新的文献求助10
27秒前
负责幻枫发布了新的文献求助10
27秒前
哎哟我去完成签到,获得积分10
28秒前
30秒前
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802042
求助须知:如何正确求助?哪些是违规求助? 3347816
关于积分的说明 10334961
捐赠科研通 3063858
什么是DOI,文献DOI怎么找? 1682191
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763969