亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computed tomography and radiation dose images-based deep-learning model for predicting radiation pneumonitis in lung cancer patients after radiation therapy

医学 放射治疗 肺癌 核医学 试验装置 放射科 医学物理学 人工智能 内科学 计算机科学
作者
Zhen Zhang,Zhixiang Wang,Tianchen Luo,Meng Yan,André Dekker,Dirk De Ruysscher,Alberto Traverso,Leonard Wee,Lujun Zhao
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:182: 109581-109581 被引量:17
标识
DOI:10.1016/j.radonc.2023.109581
摘要

To develop a deep learning model that combines CT and radiation dose (RD) images to predict the occurrence of radiation pneumonitis (RP) in lung cancer patients who received radical (chemo)radiotherapy.CT, RD images and clinical parameters were obtained from 314 retrospectively-collected patients (training set) and 35 prospectively-collected patients (test-set-1) who were diagnosed with lung cancer and received radical radiotherapy in the dose range of 50 Gy and 70 Gy. Another 194 (60 Gy group, test-set-2) and 158 (74 Gy group, test-set-3) patients from the clinical trial RTOG 0617 were used for external validation. A ResNet architecture was used to develop a prediction model that combines CT and RD features. Thereafter, the CT and RD weights were adjusted by using 40 patients from test-set-2 or 3 to accommodate cohorts with different clinical settings or dose delivery patterns. Visual interpretation was implemented using a gradient-weighted class activation map (grad-CAM) to observe the area of model attention during the prediction process. To improve the usability, ready-to-use online software was developed.The discriminative ability of a baseline trained model had an AUC of 0.83 for test-set-1, 0.55 for test-set-2, and 0.63 for test-set-3. After adjusting CT and RD weights of the model using a subset of the RTOG-0617 subjects, the discriminatory power of test-set-2 and 3 improved to AUC 0.65 and AUC 0.70, respectively. Grad-CAM showed the regions of interest to the model that contribute to the prediction of RP.A novel deep learning approach combining CT and RD images can effectively and accurately predict the occurrence of RP, and this model can be adjusted easily to fit new cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的安青完成签到,获得积分10
49秒前
53秒前
luna完成签到 ,获得积分10
59秒前
Erina完成签到 ,获得积分10
1分钟前
科研通AI2S应助焦虑发动姬采纳,获得10
1分钟前
nenoaowu应助ldqm采纳,获得10
1分钟前
1分钟前
朱佳慧发布了新的文献求助10
1分钟前
bkagyin应助朱佳慧采纳,获得10
1分钟前
2分钟前
2分钟前
哼哼完成签到,获得积分10
2分钟前
慕青应助哼哼采纳,获得10
2分钟前
2分钟前
HJJHJH发布了新的文献求助10
2分钟前
2分钟前
宝宝熊的熊宝宝完成签到,获得积分10
2分钟前
淡定发布了新的文献求助10
2分钟前
Li应助neko采纳,获得10
2分钟前
科研通AI5应助爱撒娇的衫采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
JamesPei应助淡定采纳,获得10
3分钟前
3分钟前
Yon完成签到 ,获得积分10
4分钟前
思源应助淡定的井采纳,获得30
5分钟前
姚老表完成签到,获得积分10
6分钟前
6分钟前
哼哼发布了新的文献求助10
6分钟前
6分钟前
herococa发布了新的文献求助150
7分钟前
7分钟前
7分钟前
herococa发布了新的文献求助10
7分钟前
哭泣的丝完成签到 ,获得积分10
8分钟前
8分钟前
务实的焦完成签到 ,获得积分10
8分钟前
犹豫的夏波完成签到 ,获得积分20
8分钟前
8分钟前
bopbopbaby完成签到 ,获得积分10
8分钟前
思源应助科研通管家采纳,获得10
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780810
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226580
捐赠科研通 3041495
什么是DOI,文献DOI怎么找? 1669449
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732