Pareto Refocusing for Drone-View Object Detection

计算机科学 目标检测 背景(考古学) 人工智能 瓶颈 无人机 帕累托原理 任务(项目管理) 突出 对象(语法) 计算机视觉 机器学习 空间语境意识 模式识别(心理学) 地理 数学 工程类 系统工程 考古 嵌入式系统 数学优化 生物 遗传学
作者
Jiaxu Leng,Mengjingcheng Mo,Yinghua Zhou,Chenqiang Gao,Weisheng Li,Xinbo Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1320-1334 被引量:39
标识
DOI:10.1109/tcsvt.2022.3210207
摘要

Drone-view Object Detection (DOD) is a meaningful but challenging task. It hits a bottleneck due to two main reasons: (1) The high proportion of difficult objects (e.g., small objects, occluded objects, etc.) makes the detection performance unsatisfactory. (2) The unevenly distributed objects make detection inefficient. These two factors also lead to a phenomenon, obeying the Pareto principle, that some challenging regions occupying a low area proportion of the image have a significant impact on the final detection while the vanilla regions occupying the major area have a negligible impact due to the limited room for performance improvement. Motivated by the human visual system that naturally attempts to invest unequal energies in things of hierarchical difficulty for recognizing objects effectively, this paper presents a novel Pareto Refocusing Detection (PRDet) network that distinguishes the challenging regions from the vanilla regions under reverse-attention guidance and refocuses the challenging regions with the assistance of the region-specific context. Specifically, we first propose a Reverse-attention Exploration Module (REM) that excavates the potential position of difficult objects by suppressing the features which are salient to the commonly used detector. Then, we propose a Region-specific Context Learning Module (RCLM) that learns to generate specific contexts for strengthening the understanding of challenging regions. It is noteworthy that the specific context is not shared globally but unique for each challenging region with the exploration of spatial and appearance cues. Extensive experiments and comprehensive evaluations on the VisDrone2021-DET and UAVDT datasets demonstrate that the proposed PRDet can effectively improve the detection performance, especially for those difficult objects, outperforming state-of-the-art detectors. Furthermore, our method also achieves significant performance improvements on the DTU-Drone dataset for power inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小米粒完成签到,获得积分10
1秒前
加厚加大完成签到 ,获得积分10
1秒前
uone完成签到,获得积分10
1秒前
开心最重要完成签到,获得积分10
1秒前
妮妮完成签到,获得积分10
2秒前
luyee发布了新的文献求助10
2秒前
hky完成签到 ,获得积分10
3秒前
悟123完成签到 ,获得积分10
3秒前
椿人完成签到 ,获得积分10
4秒前
研究新人完成签到,获得积分10
4秒前
帆320完成签到,获得积分10
4秒前
柠檬味电子对儿完成签到,获得积分10
5秒前
方方完成签到 ,获得积分10
6秒前
热情飞绿完成签到,获得积分20
6秒前
良辰应助网安小趴菜采纳,获得10
7秒前
qinkoko完成签到,获得积分10
9秒前
孤独丹秋完成签到,获得积分10
9秒前
独孤一草完成签到,获得积分10
10秒前
冰灵青玉完成签到,获得积分10
10秒前
糖伯虎完成签到 ,获得积分10
11秒前
11秒前
小芳芳完成签到 ,获得积分10
13秒前
wyy完成签到,获得积分10
14秒前
穆承羲完成签到 ,获得积分10
14秒前
二三三完成签到 ,获得积分10
14秒前
zhaoty完成签到,获得积分10
15秒前
冷傲百招发布了新的文献求助10
17秒前
Sea完成签到,获得积分10
17秒前
nozero应助冰灵青玉采纳,获得50
17秒前
anran完成签到 ,获得积分10
17秒前
kkscanl完成签到 ,获得积分10
18秒前
18秒前
丫丫完成签到 ,获得积分10
19秒前
烟花应助wyy采纳,获得10
19秒前
舒心的寻琴完成签到,获得积分10
20秒前
小天狼星完成签到,获得积分10
21秒前
22秒前
十八子完成签到,获得积分10
23秒前
日月星完成签到,获得积分10
24秒前
LV完成签到 ,获得积分10
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833960
求助须知:如何正确求助?哪些是违规求助? 3376379
关于积分的说明 10492911
捐赠科研通 3095897
什么是DOI,文献DOI怎么找? 1704778
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859