STGSA: A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction

计算机科学 邻接矩阵 图形 数据挖掘 邻接表 理论计算机科学 算法
作者
Zebing Wei,Hongxia Zhao,Zhishuai Li,Xiaojie Bu,Yuanyuan Chen,Xiqiao Zhang,Yisheng Lv,Fei‐Yue Wang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 226-238 被引量:19
标识
DOI:10.1109/jas.2023.123033
摘要

The success of intelligent transportation systems relies heavily on accurate traffic prediction, in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight. Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling. However, this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps. Furthermore, it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph (e.g., deriving from the geodesic distance or approximate connectivity), and may not reflect the actual interaction between nodes. To overcome those limitations, our paper proposes a spatial-temporal graph synchronous aggregation (STGSA) model to extract the localized and long-term spatial-temporal dependencies simultaneously. Specifically, a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process. In each STGSA block, we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes, and the potential temporal dependence is further fine-tuned by an adaptive weighting operation. Meanwhile, we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a data-driven manner. Then, inspired by the multi-head attention mechanism which can jointly emphasize information from different representation subspaces, we construct a multi-stream module based on the STGSA blocks to capture global information. It projects the embedding input repeatedly with multiple different channels. Finally, the predicted values are generated by stacking several multi-stream modules. Extensive experiments are constructed on six real-world datasets, and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳完成签到 ,获得积分10
1秒前
2秒前
球球尧伞耳完成签到,获得积分10
6秒前
Xiang发布了新的文献求助30
7秒前
今后应助俏皮的一一采纳,获得10
9秒前
轻松的书南完成签到 ,获得积分10
12秒前
13秒前
15秒前
Xiang完成签到,获得积分20
16秒前
尘默完成签到,获得积分10
18秒前
QIQI发布了新的文献求助10
18秒前
盐汽水完成签到 ,获得积分10
20秒前
不会科研的混子完成签到 ,获得积分10
20秒前
LeezZZZ发布了新的文献求助10
21秒前
飞兰完成签到,获得积分10
25秒前
猩猩完成签到,获得积分10
25秒前
26秒前
27秒前
28秒前
bkagyin应助LeezZZZ采纳,获得10
28秒前
29秒前
jie发布了新的文献求助10
30秒前
日光下完成签到 ,获得积分10
32秒前
pluto应助xiaowentu采纳,获得10
32秒前
33秒前
Four_twos完成签到,获得积分10
33秒前
tt发布了新的文献求助10
33秒前
牛洋洋发布了新的文献求助10
34秒前
34秒前
jie完成签到,获得积分10
36秒前
李渤海发布了新的文献求助10
37秒前
李爱国应助和气生财君采纳,获得10
37秒前
LeezZZZ发布了新的文献求助10
41秒前
科研通AI2S应助偷乐采纳,获得30
45秒前
47秒前
牛洋洋完成签到,获得积分10
48秒前
科研通AI2S应助LeezZZZ采纳,获得10
49秒前
zbl1314zbl发布了新的文献求助10
53秒前
俏皮的一一完成签到,获得积分10
53秒前
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385