Complex active sonar targets recognition using variable length deep convolutional neural network evolved by biogeography-based optimizer

超参数 水下 声纳 计算机科学 卷积神经网络 人工智能 水准点(测量) 分类器(UML) 人工神经网络 深度学习 特征提取 模式识别(心理学) 机器学习 地质学 海洋学 大地测量学
作者
Mohammad Khishe,Mokhtar Mohammadi,Adil Hussein Mohammed
出处
期刊:Waves in Random and Complex Media [Taylor & Francis]
卷期号:: 1-25 被引量:2
标识
DOI:10.1080/17455030.2022.2155319
摘要

Due to heterogeneous sound propagation conditions and fluctuating ambient noises, conventional handcrafted feature extraction methods represent poor results and high complexity in underwater sonar wave recognition tasks. In order to address these shortcomings, this paper proposes a hybrid metaheuristic deep learning-based approach. However, model depth may vary under different underwater ocean conditions. The deeper the model, the greater the number of hyperparameters, challenging the search space. It is crucial to have an efficient algorithm that can obtain an accurate model in a reasonable time. Therefore, this paper proposes the Variable-Length Habitat Biogeography-Based Optimizer (VLHBBO) to tune the hyperparameters of a deep conventional neural network. Given that there is no appropriate dataset for training the proposed model, experimental underwater scattering measurement is conducted on several target and non-target objects of the same size in the east of the Persian Gulf and the west of the Oman Sea. Furthermore, this study uses the benchmark datasets obtained from the New Array Technology III program as test datasets. The performance of the proposed model is compared to other underwater target classifiers in terms of eight metrics. The classification results indicate that the proposed VLBBO-DCNN classifier can effectively classify underwater sonar waves into relevant categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
HanruiWang完成签到,获得积分10
1秒前
小玉米完成签到,获得积分10
2秒前
丘比特应助zxj采纳,获得10
3秒前
5秒前
风清扬发布了新的文献求助10
6秒前
7秒前
7秒前
su完成签到 ,获得积分10
9秒前
9秒前
枫华发布了新的文献求助10
10秒前
Hello应助风清扬采纳,获得10
11秒前
12秒前
Hello应助123321采纳,获得10
12秒前
14秒前
小明应助sky采纳,获得30
14秒前
17秒前
CodeCraft应助闪亮的屁灯采纳,获得10
19秒前
李爱国应助小4采纳,获得10
20秒前
李健应助张靖采纳,获得10
21秒前
tea发布了新的文献求助10
23秒前
Leo发布了新的文献求助10
24秒前
25秒前
29秒前
31秒前
31秒前
Owen应助格格采纳,获得10
32秒前
安详的斓完成签到,获得积分10
32秒前
彭于晏应助Leo采纳,获得10
33秒前
34秒前
34秒前
34秒前
懒惰扼杀激情完成签到 ,获得积分10
36秒前
kun发布了新的文献求助10
38秒前
39秒前
Meyako应助飞机采纳,获得10
39秒前
赫若魔应助飞机采纳,获得30
39秒前
40秒前
天天快乐应助科研通管家采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4778313
求助须知:如何正确求助?哪些是违规求助? 4109135
关于积分的说明 12711770
捐赠科研通 3831234
什么是DOI,文献DOI怎么找? 2113329
邀请新用户注册赠送积分活动 1136774
关于科研通互助平台的介绍 1020969