亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Merging nucleus datasets by correlation-based cross-training

计算机科学 基本事实 人工智能 合并(版本控制) 多标签分类 利用 模式识别(心理学) 分类器(UML) 标记数据 训练集 任务(项目管理) 相关性 监督学习 机器学习 数据挖掘 情报检索 人工神经网络 数学 经济 管理 计算机安全 几何学
作者
Wen-Hua Zhang,Jun Zhang,Xiyue Wang,Sen Yang,Junzhou Huang,Wei Yang,Wenping Wang,Xiao Han
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:84: 102705-102705 被引量:7
标识
DOI:10.1016/j.media.2022.102705
摘要

Fine-grained nucleus classification is challenging because of the high inter-class similarity and intra-class variability. Therefore, a large number of labeled data is required for training effective nucleus classification models. However, it is challenging to label a large-scale nucleus classification dataset comparable to ImageNet in natural images, considering that high-quality nucleus labeling requires specific domain knowledge. In addition, the existing publicly available datasets are often inconsistently labeled with divergent labeling criteria. Due to this inconsistency, conventional models have to be trained on each dataset separately and work independently to infer their own classification results, limiting their classification performance. To fully utilize all annotated datasets, we formulate the nucleus classification task as a multi-label problem with missing labels to utilize all datasets in a unified framework. Specifically, we merge all datasets and combine their labels as multiple labels. Thus, each data has one ground-truth label and several missing labels. We devise a base classification module that is trained using all data but sparsely supervised by the ground-truth labels only. We then exploit the correlation among different label sets by a label correlation module. By doing so, we can have two trained basic modules and further cross-train them with both ground-truth labels and pseudo labels for the missing ones. Importantly, data without any ground-truth labels can also be involved in our framework, as we can regard them as data with all labels missing and generate the corresponding pseudo labels. We carefully re-organized multiple publicly available nucleus classification datasets, converted them into a uniform format, and tested the proposed framework on them. Experimental results show substantial improvement compared to the state-of-the-art methods. The code and data are available at https://w-h-zhang.github.io/projects/dataset_merging/dataset_merging.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限的葶完成签到,获得积分20
2秒前
王恒完成签到,获得积分20
10秒前
Artin完成签到,获得积分10
14秒前
激情的怀薇完成签到,获得积分10
16秒前
晏清关注了科研通微信公众号
23秒前
24秒前
大模型应助fl采纳,获得10
26秒前
GAO完成签到,获得积分20
29秒前
我就是我发布了新的文献求助10
29秒前
32秒前
fl发布了新的文献求助10
35秒前
迷路冰颜完成签到 ,获得积分10
36秒前
wynne313完成签到 ,获得积分10
40秒前
我就是我完成签到,获得积分10
42秒前
59秒前
合适不愁完成签到,获得积分10
1分钟前
小二郎应助野性的冰彤采纳,获得50
1分钟前
慕青应助rrrrrrry采纳,获得20
1分钟前
CipherSage应助rrrrrrry采纳,获得20
1分钟前
汉堡包应助rrrrrrry采纳,获得10
1分钟前
慕青应助rrrrrrry采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
落沧完成签到 ,获得积分10
1分钟前
我是老大应助Ytgl采纳,获得10
1分钟前
cicade发布了新的文献求助10
1分钟前
烟花应助rrrrrrry采纳,获得30
1分钟前
1分钟前
赘婿应助rrrrrrry采纳,获得100
1分钟前
cicade完成签到,获得积分10
2分钟前
Lorain发布了新的文献求助10
2分钟前
洁净的士晋完成签到,获得积分10
2分钟前
小文子完成签到 ,获得积分10
2分钟前
烟花应助风风采纳,获得10
2分钟前
王_123123123123w完成签到 ,获得积分10
2分钟前
WerWu完成签到,获得积分10
2分钟前
2分钟前
Able完成签到,获得积分10
2分钟前
2分钟前
Akim应助fl采纳,获得10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780779
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226507
捐赠科研通 3041459
什么是DOI,文献DOI怎么找? 1669398
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732