Learning Dynamic Selection and Pricing of Out-of-Home Deliveries

选择(遗传算法) 计算机科学 运筹学 运输工程 工程类 人工智能
作者
Fabian Akkerman,Peter Dieter,Martijn Mes
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:59 (2): 250-278 被引量:3
标识
DOI:10.1287/trsc.2023.0434
摘要

Home delivery failures, traffic congestion, and relatively large handling times have a negative impact on the profitability of last-mile logistics. A potential solution is the delivery to parcel lockers or parcel shops, denoted by out-of-home (OOH) delivery. In the academic literature, models for OOH delivery are so far limited to static settings, contrasting with the sequential nature of the problem. We model the sequential decision-making problem of which OOH location to offer against what incentive for each incoming customer, taking into account future customer arrivals and choices. We propose dynamic selection and pricing of OOH (DSPO), an algorithmic pipeline that uses a novel spatial-temporal state encoding as input to a convolutional neural network. We demonstrate the performance of our method by benchmarking it against two state-of-the-art approaches. Our extensive numerical study, guided by real-world data, reveals that DSPO can save 19.9 percentage points (%pt) in costs compared with a situation without OOH locations, 7%pt compared with a static selection and pricing policy, and 3.8%pt compared with a state-of-the-art demand management benchmark. We provide comprehensive insights into the complex interplay between OOH delivery dynamics and customer behavior influenced by pricing strategies. The implications of our findings suggest that practitioners adopt dynamic selection and pricing policies. History: This paper has been accepted for the Transportation Science special issue on TSL Conference 2023. Funding: This work was supported by TKI DINALOG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率沂完成签到,获得积分10
刚刚
kk完成签到 ,获得积分20
刚刚
1秒前
Tang完成签到,获得积分10
2秒前
changping应助顶级科学家采纳,获得10
3秒前
3秒前
3秒前
yangmin完成签到,获得积分10
3秒前
曹文鹏完成签到,获得积分10
3秒前
4秒前
4秒前
高兴白莲完成签到,获得积分10
4秒前
喽喽发布了新的文献求助30
5秒前
醉熏的幻莲关注了科研通微信公众号
6秒前
好好好发布了新的文献求助10
8秒前
8秒前
Zy发布了新的文献求助10
8秒前
shine发布了新的文献求助10
10秒前
SIA_TERS发布了新的文献求助10
11秒前
光亮的秋白完成签到 ,获得积分10
12秒前
共享精神应助丰富的墨镜采纳,获得10
12秒前
13秒前
14秒前
15秒前
科研通AI2S应助net80yhm采纳,获得10
17秒前
牛马鹅发布了新的文献求助10
18秒前
琳666完成签到,获得积分10
18秒前
科研dog完成签到,获得积分10
19秒前
杨裕农发布了新的文献求助10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
一壶古酒应助科研通管家采纳,获得100
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
HANGOVERG应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得30
22秒前
烤冷面应助科研通管家采纳,获得10
22秒前
HANGOVERG应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164