催化作用
污染物
化学
降级(电信)
芬顿反应
化学工程
环境化学
材料科学
有机化学
计算机科学
电信
工程类
作者
Han Xiao,Di Luo,Duoduo Fang,Yupeng Yang,Jiangzhi Zi,Zichao Lian
出处
期刊:Small
[Wiley]
日期:2025-01-15
标识
DOI:10.1002/smll.202410807
摘要
Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.3% within 1 min. Theoretical calculation suggested that the doping of high-valence Mo6+ as the electron reservoir, promoted electronic delocalization at Fe sites, thereby enhancing the adsorption and dissociation of peroxymonosulfate (PMS), subsequent generation of Fe (IV) = O and singlet oxygen (1O2) species. An interesting finding is that Mo sites can adsorb chlorine sites in 4-chlorophenol (4-CP) and induce C─Cl bond fracture. Thus, the FeMoNC/PMS system has high catalytic performance due to the synergistic effects of Mo-induced dechlorination and non-radical species (Fe(IV) = O and 1O2) as the degradation pathways, the degradation efficiency of 99.1% of 4-CP within 5 min without significant performance decline after 168 h ≈15,120-bed volumes. These findings can advance mechanistic understanding of PMS activation at the molecular level and guide the rational design of efficient eco-friendly single-atom catalysts (SACs) catalysts with bimetallic atomic sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI