Computational homogenization for aerogel-like polydisperse open-porous materials using neural network-based surrogate models on the microscale

均质化(气候) 微尺度化学 材料科学 代表性基本卷 多孔性 多孔介质 人工神经网络 微观力学 气凝胶 机械 微观结构 算法 计算机科学 复合材料 数学 人工智能 物理 复合数 生物 生物多样性 生态学 数学教育
作者
Axel Klawonn,Martin Lanser,Lucas Mager,Ameya Rege
出处
期刊:Computational Mechanics [Springer Nature]
标识
DOI:10.1007/s00466-024-02588-9
摘要

Abstract The morphology of nanostructured materials exhibiting a polydisperse porous space, such as aerogels, is very open porous and fine grained. Therefore, a simulation of the deformation of a large aerogel structure resolving the nanostructure would be extremely expensive. Thus, multi-scale or homogenization approaches have to be considered. Here, a computational scale bridging approach based on the $$\hbox {FE}^2$$ FE 2 method is suggested, where the macroscopic scale is discretized using finite elements while the microstructure of the open-porous material is resolved as a network of Euler–Bernoulli beams. Here, the beam frame based RVEs (representative volume elements) have pores whose size distribution follows the measured values for a specific material. This is a well-known approach to model aerogel structures. For the computational homogenization, an approach to average the first Piola–Kirchhoff stresses in a beam frame by neglecting rotational moments is suggested. To further overcome the computationally most expensive part in the homogenization method, that is, solving the RVEs and averaging their stress fields, a surrogate model is introduced based on neural networks. The network’s input is the localized deformation gradient on the macroscopic scale and its output is the averaged stress for the specific material. It is trained on data generated by the beam frame based approach. The effiency and robustness of both homogenization approaches is shown numerically, the approximation properties of the surrogate model is verified for different macroscopic problems and discretizations. Different (Quasi-)Newton solvers are considered on the macroscopic scale and compared with respect to their convergence properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
面壁思过发布了新的文献求助10
4秒前
寻道图强应助yuqinglei采纳,获得30
4秒前
7秒前
linzg发布了新的文献求助100
7秒前
脑子大聪明完成签到,获得积分20
9秒前
biubiu发布了新的文献求助10
9秒前
9秒前
10秒前
Zjn-完成签到,获得积分10
10秒前
精巧发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
羲和完成签到 ,获得积分10
14秒前
14秒前
biubiu完成签到,获得积分20
15秒前
阿牛发布了新的文献求助10
16秒前
隐形曼青应助黑虎采纳,获得10
16秒前
临渊之何发布了新的文献求助10
17秒前
所所应助Vespa采纳,获得10
18秒前
搜集达人应助xh采纳,获得10
19秒前
似水流年完成签到,获得积分10
19秒前
段醒醒关注了科研通微信公众号
20秒前
刘慧发布了新的文献求助10
21秒前
FashionBoy应助周防尊采纳,获得10
21秒前
充电宝应助快乐的紫寒采纳,获得10
22秒前
临渊之何完成签到,获得积分10
22秒前
面壁思过发布了新的文献求助10
24秒前
25秒前
26秒前
大福完成签到 ,获得积分10
28秒前
泥豪泥嚎完成签到 ,获得积分10
29秒前
xh发布了新的文献求助10
29秒前
30秒前
英姑应助月下荷花采纳,获得10
31秒前
高贵谷芹完成签到,获得积分10
31秒前
大福关注了科研通微信公众号
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557518
求助须知:如何正确求助?哪些是违规求助? 4642631
关于积分的说明 14668588
捐赠科研通 4584033
什么是DOI,文献DOI怎么找? 2514512
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459482