MLAR-UNet: LDCT image denoising based on U-Net with multiple lightweight attention-based modules and residual reinforcement

计算机科学 残余物 强化学习 人工智能 变压器 卷积(计算机科学) 模式识别(心理学) 人工神经网络 算法 电压 工程类 电气工程
作者
Hao Tang,Ningfeng Que,Ye Tian,Mingzhe Li,Alessandro Perelli,Yueyang Teng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/adb19a
摘要

Abstract Objective. Computed tomography (CT) is a crucial medical imaging technique which uses X-ray radiation to identify cancer tissues. Since radiation poses a significant health risk, low dose acquisition procedures need to be adopted. However, low-dose CT (LDCT) can cause higher noise and artifacts which massively degrade the diagnosis. Approach. To denoise LDCT images more effectively, this paper proposes a deep learning method based on U-Net with multiple lightweight attention-based modules and residual reinforcement (MLAR-UNet), We integrate a U-Net architecture with several advanced modules, including Convolutional Block Attention Module (CBAM), Cross Residual Module (CR), Attention Cross Reinforcement Module (ACRM), and Convolution and Transformer Cross Attention Module (CTCAM). Among these modules, CBAM applies channel and spatial attention mechanisms to enhance local feature representation. However, serious detail loss caused by incorrect embedding of CBAM for LDCT denoising is verified in this study. To relieve this, we introduce CR to reduce information loss in deeper layers, preserving features more effectively. To address the excessive local attention of CBAM, we design ACRM, which incorporates Transformer to adjust the attention weights. Furthermore, we design CTCAM, which leverages a complex combination of Transformer and convolution to capture multi-scale information and compute more accurate attention weights. Results. Experiments verify the embedding rationality and validity of each module and show that the proposed MLAR-UNet denoises LDCT images more effectively and preserves more details than many state-of-the-art (SOTA) methods on clinical chest and abdominal CT datasets. Significance. The proposed MLAR-UNet not only demonstrates superior LDCT image denoising capability but also highlights the strong detail comprehension and negligible overheads of our designed ACRM and CTCAM. These findings provide a novel approach to integrating Transformer more efficiently in image processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ndvWy8发布了新的文献求助10
2秒前
aaaaarfv发布了新的文献求助10
3秒前
3秒前
桑尼号完成签到,获得积分10
3秒前
斯文败类应助Lwssss采纳,获得10
3秒前
3秒前
biubiuu完成签到,获得积分10
4秒前
瞳梦完成签到,获得积分10
7秒前
moyu发布了新的文献求助10
8秒前
小石完成签到,获得积分10
9秒前
研友_Lw7OvL发布了新的文献求助30
10秒前
11秒前
miao完成签到,获得积分10
13秒前
小白鼠完成签到 ,获得积分10
13秒前
科目三应助聂裕铭采纳,获得10
13秒前
14秒前
cdercder应助桃桃甜筒采纳,获得10
14秒前
小石发布了新的文献求助10
15秒前
大模型应助高兴的明轩采纳,获得10
15秒前
阿敬发布了新的文献求助10
15秒前
小科完成签到,获得积分10
15秒前
15秒前
晓宇完成签到 ,获得积分10
15秒前
Lwssss完成签到 ,获得积分10
16秒前
18秒前
从容的鲜花完成签到,获得积分20
18秒前
可乐思慕雪山茶完成签到 ,获得积分10
19秒前
俊逸的问薇完成签到 ,获得积分10
19秒前
20秒前
英姑应助aaaaarfv采纳,获得10
20秒前
YX发布了新的文献求助10
20秒前
20秒前
Nobody完成签到,获得积分10
21秒前
23秒前
nn发布了新的文献求助10
24秒前
lezbj99发布了新的文献求助10
24秒前
韩钰小宝完成签到 ,获得积分10
24秒前
12发布了新的文献求助10
24秒前
糖优优完成签到,获得积分10
24秒前
wxy完成签到,获得积分10
26秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801265
求助须知:如何正确求助?哪些是违规求助? 3346952
关于积分的说明 10331093
捐赠科研通 3063252
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763785