A machine learning based prediction model for the impact mechanical response of composite laminates considering microstructure sensitive transverse properties

微观力学 材料科学 复合材料层合板 有限元法 复合材料 代表性基本卷 刚度 结构工程 复合数 横截面 人工神经网络 纤维 微观结构 计算机科学 工程类 机器学习
作者
Zhang Yiben,Feng Guangshuo,Bo Liu
出处
期刊:Polymer Composites [Wiley]
被引量:1
标识
DOI:10.1002/pc.29203
摘要

Abstract The accurate and efficient prediction of impact mechanical response is crucial for safety design of composite structures. In this work, high‐fidelity representative volume elements (RVEs) with fiber, matrix and fiber/matrix interface are established, in which random fiber distributions are considered. A failure envelope under transverse loads is proposed based on computational micromechanical RVEs, and it is implemented by ABAQUS VUMAT subroutines to predict the mechanical response of composite laminates under impact loads. Based on a dataset from computational macromechanical finite element simulations, an artificial neural network model is established and trained. It is found that the random fiber distribution introduced a more obvious fluctuation to tension/compression strength than shear strength. The proposed failure criteria showed a better performance than Hashin and Tsai‐Wu criteria especially in combined compression and shear loads. An ANN model with 8 hidden layers can achieve the prediction with an acceptable coefficient of determination (R 2 ) 0.98 and loss functions of mean absolute error (MAE) 71. For certain impact loading conditions, the well trained machine learning model predicted impact contact force history within 30 min, while the FEA costs about more than 75 min on the same computer. The prediction speed is increased by over 60% for certain impact loading conditions. It is hence shown that this method provides a potential alternative for evaluation of the impact resistance of composite structures. Highlights High‐fidelity computational micromechanics analysis based on representative volume elements are performed to uncover the complex relationship between microstructure and transverse strengths of composite laminates. The microstructure dependent transverse strength criterion shows high accuracy in combined compression and shear loads compared with Hashin and Tsai‐Wu criteria. A multi‐layer artificial neural network model is established and trained for the rapid prediction of impact force history for composite laminates. The rapid prediction method is achieved with a coefficient of determination of 0.98, and the prediction speed is increased by more than 60% for certain impact loading conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好的小萱完成签到 ,获得积分10
3秒前
高高的巨人完成签到 ,获得积分0
3秒前
超越俗尘完成签到,获得积分10
4秒前
7秒前
孙紫阳完成签到 ,获得积分10
9秒前
充电宝应助科研通管家采纳,获得10
11秒前
丘比特应助天真的灵薇采纳,获得10
11秒前
大铁牛发布了新的文献求助30
13秒前
末末完成签到 ,获得积分10
15秒前
大铁牛完成签到,获得积分10
21秒前
皮老八完成签到 ,获得积分10
22秒前
mufulee完成签到,获得积分10
25秒前
河鲸完成签到 ,获得积分10
28秒前
卓初露完成签到 ,获得积分10
32秒前
Momo完成签到,获得积分10
33秒前
mmd完成签到 ,获得积分10
34秒前
激动的xx完成签到 ,获得积分10
35秒前
执着的以筠完成签到 ,获得积分10
38秒前
menghongmei完成签到 ,获得积分10
39秒前
kenny完成签到,获得积分10
41秒前
JESI完成签到,获得积分10
43秒前
游01完成签到 ,获得积分10
43秒前
摸鱼人完成签到,获得积分10
44秒前
齐半青完成签到,获得积分10
46秒前
Leif完成签到,获得积分0
46秒前
科研通AI5应助大观天下采纳,获得10
48秒前
Cell完成签到 ,获得积分10
54秒前
56秒前
jesi完成签到,获得积分10
58秒前
寒战完成签到 ,获得积分10
1分钟前
亲爱的冯老师完成签到 ,获得积分10
1分钟前
SDS完成签到 ,获得积分10
1分钟前
落雪完成签到 ,获得积分10
1分钟前
朱笑白完成签到 ,获得积分10
1分钟前
舒心无剑完成签到 ,获得积分10
1分钟前
一白完成签到 ,获得积分10
1分钟前
孤云出岫完成签到,获得积分10
1分钟前
davyean完成签到,获得积分10
1分钟前
故城完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4754415
求助须知:如何正确求助?哪些是违规求助? 4098252
关于积分的说明 12679126
捐赠科研通 3811963
什么是DOI,文献DOI怎么找? 2104413
邀请新用户注册赠送积分活动 1129607
关于科研通互助平台的介绍 1007264