Metabolic syndrome is associated with breast cancer mortality: A systematic review and meta‐analysis

医学 代谢综合征 乳腺癌 内科学 荟萃分析 人口 观察研究 随机对照试验 肥胖 癌症 环境卫生
作者
Sixten Harborg,Henrik Larsen,Stine Elsgaard,Signe Borgquist
出处
期刊:Journal of Internal Medicine [Wiley]
标识
DOI:10.1111/joim.20052
摘要

Abstract Background This systematic review and meta‐analysis assesses the association between metabolic syndrome and breast cancer (BC) outcomes in BC survivors. Methods Systematic searches were carried out in PubMed and Embase using variations of the search terms: breast neoplasms (population), metabolic syndrome (exposure), and survival (outcome). Metabolic syndrome was characterized according to the American Heart Association, which includes the presence of three out of five abnormal findings among the risk factors: high blood pressure, high triglycerides, low high‐density lipoprotein, high fasting glucose, and central obesity. Data were obtained from observational studies and randomized controlled trials that utilized survival statistics and reported survival ratios to investigate how the presence of metabolic syndrome at the time of BC diagnosis is associated with BC outcomes. Study data were independently extracted by two authors, and effect sizes were pooled using random‐effects models. Results From the 1019 studies identified in the literature search, 17 were deemed eligible. These encompassed 42,135 BC survivors. The pooled estimates revealed that BC survivors who had metabolic syndrome at the time of their BC diagnosis experienced increased risk of recurrence (HR 1.69, 95% CI: 1.39–2.06), BC mortality (HR 1.83, 95% CI: 1.35–2.49), and shorter disease‐free survival (HR 1.57, 95% CI: 1.36–1.81) compared to BC survivors without metabolic syndrome. Conclusions Among BC survivors, metabolic syndrome was associated with inferior BC outcomes. This necessitates the creation of clinical guidelines that include metabolic screening for BC survivors. Further research should identify effective interventions to reduce the prevalence of metabolic syndrome among BC survivors to improve metabolic health and BC outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助尊敬的芷卉采纳,获得10
2秒前
esther发布了新的文献求助10
3秒前
3秒前
4秒前
领导范儿应助mei采纳,获得10
4秒前
脑洞疼应助飞飞采纳,获得30
4秒前
5秒前
阿狸发布了新的文献求助10
5秒前
6秒前
大号发布了新的文献求助10
8秒前
大模型应助Vegccc采纳,获得10
9秒前
weixiaoyu发布了新的文献求助10
9秒前
李健应助黄瓜双耳拌腐竹采纳,获得10
9秒前
大模型应助Trailblazer采纳,获得10
11秒前
松月发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
赘婿应助怕黑傲珊采纳,获得10
16秒前
16秒前
17秒前
和谐板栗发布了新的文献求助10
17秒前
mei完成签到,获得积分10
18秒前
con完成签到 ,获得积分10
20秒前
20秒前
xixi完成签到,获得积分10
21秒前
zhao完成签到,获得积分10
21秒前
chuanyu发布了新的文献求助10
22秒前
在水一方应助vtfangfangfang采纳,获得10
22秒前
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
Singularity应助科研通管家采纳,获得10
23秒前
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
Vegccc发布了新的文献求助10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
A Treatise on Hydrostatics and Hydrodynamics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836508
求助须知:如何正确求助?哪些是违规求助? 3378791
关于积分的说明 10506129
捐赠科研通 3098486
什么是DOI,文献DOI怎么找? 1706518
邀请新用户注册赠送积分活动 821062
科研通“疑难数据库(出版商)”最低求助积分说明 772431