Revitalizing Image Retrieval: AI Enhancement and Metaheuristic Algorithm Adaptation

元启发式 适应(眼睛) 计算机科学 图像(数学) 人工智能 算法 心理学 神经科学
作者
Kumaravel Pichaimani,S. Thabasu Kannan
出处
期刊:EAI endorsed transactions on internet of things [European Alliance for Innovation]
卷期号:11
标识
DOI:10.4108/eetiot.5293
摘要

INTRODUCTION: In recent years, development of digital technology has led to number of images, which can be stored in digital format. However, searching and retrieval of images in large image DB (Database) is a mammoth task. Therefore, different image retrieval techniques have been used for retrieving the suitable images, which includes retrieval of images using keywords or annotations, however, these methods are considered to be time consuming and leads to imprecise outcome. OBJECTIVES: Therefore Effective and precise retrieval of suitable images from huge DB can thrived by utilizing CBIR (Content Based Image Retrieval) system. However, incorporation of CBIR in most existing studies resulted in low accuracy for IR. So, proposed model incorporates Modified ResNet50 (M-ResNet50) and VGG 16 model for feature extraction in order to extract the best features as M-ResNet50 utilizes extra dense layers which aids in better feature extraction process. METHODS: After feature extraction, the features are fused using PCA and fed to Modified PSO (M-PSO) model for obtaining optimized features since M-PSO is fast and aids in selecting optimal features after processing from insignificant features that primarily set the preferred number of necessary features. RESULTS: Moreover, M-PSO require less parameters to tune instead of a huge number of parameters by incorporating K parameters of KNN algorithm in order to find the nearest images to Query Images (QI), thereby making the model appropriate for IR process with better similarity score. CONCLUSION: The proposed model utilizes 8 different sun images at different intervals for IR process. Finally, the proposed model is evaluated by using several metrics such as accuracy, precision, recall and F1 score, besides the proposed model is compared with various existing models in order to evaluate the efficiency of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助linyh采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
orixero应助研友_LBR9gL采纳,获得10
4秒前
北峰发布了新的文献求助10
5秒前
7秒前
充电宝应助fanfan采纳,获得10
7秒前
fanqinge完成签到,获得积分20
7秒前
8秒前
Tt发布了新的文献求助60
8秒前
10秒前
凉白开完成签到,获得积分10
10秒前
Ava应助闪光魔法暴龙采纳,获得10
11秒前
走着走着就散了完成签到,获得积分10
11秒前
文献文献完成签到 ,获得积分10
13秒前
天天快乐应助Xiaoli采纳,获得10
13秒前
blacksmith0发布了新的文献求助10
13秒前
mao发布了新的文献求助10
14秒前
16秒前
linyh完成签到,获得积分10
16秒前
CurryFan完成签到,获得积分10
17秒前
husy完成签到,获得积分10
18秒前
19秒前
希望天下0贩的0应助qianqian采纳,获得10
20秒前
21秒前
NexusExplorer应助球球采纳,获得10
23秒前
容若发布了新的文献求助10
23秒前
摇月黄昏发布了新的文献求助10
23秒前
研友_GZ3zRn发布了新的文献求助10
25秒前
高高惜寒完成签到,获得积分10
25秒前
26秒前
26秒前
困困包应助王小果采纳,获得10
29秒前
科里斯皮尔应助王小果采纳,获得10
29秒前
科研通AI6应助冯大夫采纳,获得10
30秒前
量子星尘发布了新的文献求助10
30秒前
33秒前
34秒前
多非计划完成签到,获得积分10
35秒前
前度刘郎应助fanqinge采纳,获得10
36秒前
爆米花应助kuzzi采纳,获得10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240739
求助须知:如何正确求助?哪些是违规求助? 3774406
关于积分的说明 11853163
捐赠科研通 3429577
什么是DOI,文献DOI怎么找? 1882404
邀请新用户注册赠送积分活动 934325
科研通“疑难数据库(出版商)”最低求助积分说明 840937