亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Shape Mediation Analysis in Alzheimer's Disease Studies

因果推理 调解 混淆 计算机科学 结构方程建模 神经影像学 计量经济学 神经认知 推论 稳健性(进化) 机器学习 人工智能 数学 统计 心理学 认知 生物 生物化学 精神科 神经科学 政治学 法学 基因
作者
Xingcai Zhou,Miyeon Yeon,Jiangyan Wang,Shengxian Ding,Kelly Lei,Yan‐Yong Zhao,Rongjie Liu,Chao Huang
出处
期刊:Statistics in Medicine [Wiley]
标识
DOI:10.1002/sim.10265
摘要

As a crucial tool in neuroscience, mediation analysis has been developed and widely adopted to elucidate the role of intermediary variables derived from neuroimaging data. Typically, structural equation models (SEMs) are employed to investigate the influences of exposures on outcomes, with model coefficients being interpreted as causal effects. While existing SEMs have proven to be effective tools for mediation analysis involving various neuroimaging-related mediators, limited research has explored scenarios where these mediators are derived from the shape space. In addition, the linear relationship assumption adopted in existing SEMs may lead to substantial efficiency losses and decreased predictive accuracy in real-world applications. To address these challenges, we introduce a novel framework for shape mediation analysis, designed to explore the causal relationships between genetic exposures and clinical outcomes, whether mediated or unmediated by shape-related factors while accounting for potential confounding variables. Within our framework, we apply the square-root velocity function to extract elastic shape representations, which reside within the linear Hilbert space of square-integrable functions. Subsequently, we introduce a two-layer shape regression model to characterize the relationships among neurocognitive outcomes, elastic shape mediators, genetic exposures, and clinical confounders. Both estimation and inference procedures are established for unknown parameters along with the corresponding causal estimands. The asymptotic properties of estimated quantities are investigated as well. Both simulated studies and real-data analyses demonstrate the superior performance of our proposed method in terms of estimation accuracy and robustness when compared to existing approaches for estimating causal estimands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助bingbing采纳,获得10
2秒前
只只呀发布了新的文献求助10
7秒前
charih完成签到 ,获得积分10
9秒前
正在获取昵称中...完成签到,获得积分10
15秒前
山沟沟完成签到,获得积分10
16秒前
25秒前
球球尧伞耳完成签到,获得积分10
29秒前
麦斯发布了新的文献求助10
30秒前
彩色完成签到 ,获得积分10
30秒前
Ji完成签到,获得积分10
32秒前
LX完成签到 ,获得积分10
33秒前
33秒前
sss完成签到 ,获得积分10
36秒前
顺心未来发布了新的文献求助10
38秒前
44秒前
HeWang发布了新的文献求助10
48秒前
orixero应助只只呀采纳,获得10
54秒前
primrose完成签到 ,获得积分10
1分钟前
HeWang完成签到,获得积分10
1分钟前
NexusExplorer应助Zzzzzzzz采纳,获得30
1分钟前
赘婿应助麦斯采纳,获得10
1分钟前
konosuba完成签到,获得积分0
1分钟前
努力加油煤老八完成签到 ,获得积分10
1分钟前
1分钟前
华仔应助满天星采纳,获得10
1分钟前
1分钟前
只只呀发布了新的文献求助10
1分钟前
1分钟前
斯寜应助upsoar采纳,获得10
1分钟前
Cherry完成签到,获得积分20
1分钟前
坦率绮山完成签到 ,获得积分10
1分钟前
无误发布了新的文献求助10
1分钟前
1分钟前
greentea发布了新的文献求助10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
bc应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
满天星发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779050
求助须知:如何正确求助?哪些是违规求助? 3324712
关于积分的说明 10219547
捐赠科研通 3039767
什么是DOI,文献DOI怎么找? 1668404
邀请新用户注册赠送积分活动 798648
科研通“疑难数据库(出版商)”最低求助积分说明 758487