分数布朗运动
数学
随机微分方程
泊松分布
分数阶微积分
应用数学
几何布朗运动
布朗运动
订单(交换)
微分方程
不动点定理
数学分析
扩散过程
计算机科学
统计
创新扩散
知识管理
财务
经济
作者
Afaf Hassan Ahmed,Hamdy M. Ahmed
标识
DOI:10.1080/23307706.2023.2171920
摘要
The existence of solutions of non-instantaneous impulsive Hilfer–Katugampola fractional differential equations of order 1/2<α<1 and parameter 0≤β≤1 with fractional Brownian motion (fBm) and Poisson jumps is investigated in this paper. The required results are obtained based on fractional calculus, stochastic analysis, semigroups, and the fixed point theorem. In the end of the paper, an example is provided to illustrate the applicability of the theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI