Causal factors underlying diabetes risk informed by Mendelian randomisation analysis: evidence, opportunities and challenges

疾病 孟德尔随机化 糖尿病 医学 观察研究 2型糖尿病 生物信息学 流行病学 微生物群 生物 遗传学 内科学 遗传变异 内分泌学 基因 基因型
作者
Shuai Yuan,Jordi Merino,Susanna C. Larsson
出处
期刊:Diabetologia [Springer Nature]
卷期号:66 (5): 800-812 被引量:13
标识
DOI:10.1007/s00125-023-05879-7
摘要

Diabetes and its complications cause a heavy disease burden globally. Identifying exposures, risk factors and molecular processes causally associated with the development of diabetes can provide important evidence bases for disease prevention and spur novel therapeutic strategies. Mendelian randomisation (MR), an epidemiological approach that uses genetic instruments to infer causal associations between an exposure and an outcome, can be leveraged to complement evidence from observational and clinical studies. This narrative review aims to summarise the evidence on potential causal risk factors for diabetes by integrating published MR studies on type 1 and 2 diabetes, and to reflect on future perspectives of MR studies on diabetes. Despite the genetic influence on type 1 diabetes, few MR studies have been conducted to identify causal exposures or molecular processes leading to increased disease risk. In type 2 diabetes, MR analyses support causal associations of somatic, mental and lifestyle factors with development of the disease. These studies have also identified biomarkers, some of them derived from the gut microbiota, and molecular processes leading to increased disease risk. These studies provide valuable data to better understand disease pathophysiology and explore potential therapeutic targets. Because genetic association studies have mostly been restricted to participants of European descent, multi-ancestry cohorts are needed to examine the role of different types of physical activity, dietary components, metabolites, protein biomarkers and gut microbiome in diabetes development.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
从容的思枫完成签到,获得积分10
1秒前
2秒前
sas发布了新的文献求助10
2秒前
3秒前
4秒前
嘿嘿应助科研通管家采纳,获得10
5秒前
FKHY应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
7秒前
7秒前
8秒前
10秒前
11秒前
汉堡包应助从容的思枫采纳,获得10
12秒前
12秒前
传奇3应助精明的蜗牛采纳,获得10
12秒前
sherry221发布了新的文献求助10
12秒前
栗栗发布了新的文献求助10
12秒前
sifLiu发布了新的文献求助10
13秒前
深情安青应助时尚丸子采纳,获得10
14秒前
猕猴桃完成签到 ,获得积分10
14秒前
15秒前
15秒前
天天快乐应助七页禾采纳,获得10
15秒前
hanahuang发布了新的文献求助10
16秒前
16秒前
王旭发布了新的文献求助10
17秒前
19秒前
古猫宁发布了新的文献求助10
20秒前
20秒前
知音涵煦完成签到 ,获得积分10
23秒前
laz发布了新的文献求助10
23秒前
23秒前
英俊的铭应助sas采纳,获得10
26秒前
蓝天应助谦让的鹭洋采纳,获得10
27秒前
鸿儒发布了新的文献求助10
28秒前
28秒前
sl完成签到 ,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5873388
求助须知:如何正确求助?哪些是违规求助? 6497930
关于积分的说明 15671745
捐赠科研通 4990947
什么是DOI,文献DOI怎么找? 2690411
邀请新用户注册赠送积分活动 1632959
关于科研通互助平台的介绍 1590777