清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploration of the anti-inflammatory mechanism of Lanqin oral solution based on the network pharmacology analysis optimized by Q-markers selection

机制(生物学) 药效学 小檗碱 化学计量学 计算生物学 药理学 药品 计算机科学 医学 药代动力学 机器学习 生物 认识论 哲学
作者
Hui Ma,Weiliang Fu,Hengyuan Yu,Youdong Xu,Lulu Xiao,Yiwei Zhang,Yongjiang Wu,Xuesong Liu,Yong Chen,Tengfei Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:154: 106607-106607 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.106607
摘要

Network pharmacology is widely used to predict the mechanism of traditional Chinese medicines (TCM), but the framework in traditional network pharmacology analysis ignores the relationship between the concentration of components and drug efficacy. Lanqin oral solution (LOS) is a TCM formulation that widely used in the clinical treatment of pharyngitis, but its pharmacodynamic mechanism is still unknown. The present study was designed to elaborate the anti-inflammatory mechanism of LOS based on the quality markers (Q-markers). The efficacy of LOS was correlated with the fingerprint common peaks by chemometrics to select key peaks, and the Q-markers were further confirmed by mass spectrometry. Network pharmacology analysis was performed based on the chosen Q-markers to elaborate the potential pharmacodynamic mechanisms. Four efficacy-related chromatographic peaks were screened by the novel competitive adaptive reweighted sampling (CARS) spectrum-effect relationship analysis and series of other chemometrics methods. Four peaks were further characterized as the Q-markers in the LOS by mass spectrometry, i.e., geniposide, berberine, palmatine and baicalin. The ingredient-target network demonstrated that the LOS showed more impact on the NF-κB signaling pathway to elicit anti-inflammatory ability. Overall, the present study has introduced CARS into the spectrum-effect relationship analysis for the first time, which complemented the commonly applied chemometric methods. The network established based on the screened Q-markers was highly interpretable and successfully achieved the prediction of the anti-inflammatory mechanism of LOS. The proposed workflow provides a systematic method for exploring the mechanism of TCM based on identifying efficacy indicators. More importantly, it offers a reference for clarifying the mechanisms for other TCM formulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的剑发布了新的文献求助10
16秒前
16秒前
义气的泥猴桃完成签到,获得积分20
21秒前
NexusExplorer应助糊涂的剑采纳,获得10
23秒前
Fairy发布了新的文献求助10
23秒前
腼腆的月亮完成签到,获得积分20
1分钟前
1分钟前
1分钟前
小事完成签到 ,获得积分10
1分钟前
Hillson发布了新的文献求助10
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
Ava应助典雅鲜花采纳,获得10
1分钟前
2分钟前
Hillson完成签到,获得积分10
2分钟前
2分钟前
small发布了新的文献求助10
2分钟前
Zhao完成签到 ,获得积分10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
瘦瘦的枫叶完成签到 ,获得积分10
4分钟前
4分钟前
狂野的雨灵完成签到,获得积分10
4分钟前
月儿完成签到 ,获得积分10
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
5分钟前
Alisha完成签到,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
lulu发布了新的文献求助10
7分钟前
情怀应助lulu采纳,获得10
7分钟前
8分钟前
8分钟前
cokevvv发布了新的文献求助10
8分钟前
糊涂的剑发布了新的文献求助10
9分钟前
搜集达人应助糊涂的剑采纳,获得10
9分钟前
科研通AI5应助cokevvv采纳,获得10
9分钟前
9分钟前
gszy1975完成签到,获得积分10
10分钟前
hahaha完成签到,获得积分10
10分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4753884
求助须知:如何正确求助?哪些是违规求助? 4098014
关于积分的说明 12678831
捐赠科研通 3811422
什么是DOI,文献DOI怎么找? 2104193
邀请新用户注册赠送积分活动 1129358
关于科研通互助平台的介绍 1006822