An Ultrasmall Bolt Defect Detection Method for Transmission Line Inspection

计算机科学 材料科学 输电线路 传输(电信) 结构工程 声学 电子工程 工程类 物理 电气工程
作者
Peng Luo,Bo Wang,Hongxia Wang,Fuqi Ma,Hengrui Ma,Leixiong Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:40
标识
DOI:10.1109/tim.2023.3241994
摘要

Bolt defect inspection is an important work in transmission line inspection. Due to the small size of bolts in the transmission line inspection images, existing algorithms are difficult to extract valuable features and achieve poor performance on bolt defect detection. This paper proposed an ultra-small bolt defect detection model(UBDDM) based on a deep convolutional neural network(DCNN), including an ultra-small object perception module(UOPM) and a local bolt detection module(LBDM). In this paper, UOPM is first constructed to realize coarse region recognition for the salient region of bolts in the inspection images, and the high-resolution image blocks are obtained from the original image according to the recognition results. Then, LBDM is constructed to intelligently identify the bolt defects from the high-resolution image blocks. Considering that the features of ultra-small targets are difficult to extract, feature extraction networks are constructed based on ResNet-50, and the hybrid attention mechanism and multi-scale feature fusion are introduced to further improve the network's ability to extract shallow features. This method uses two-stage detection to realize end-to-end bolt defect detection but only needs to provide a single-stage target detection label, which greatly reduces the workload of data labeling. Experimental results show that the proposed method achieves excellent performance on bolt defect detection in inspection images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
soft发布了新的文献求助10
2秒前
3秒前
斑马发布了新的文献求助10
4秒前
5秒前
7秒前
潇洒寒烟完成签到,获得积分10
7秒前
XXXX完成签到 ,获得积分10
7秒前
hdy331完成签到,获得积分10
7秒前
隐形曼青应助zbb采纳,获得10
9秒前
阳光c发布了新的文献求助10
10秒前
10秒前
积极炎彬发布了新的文献求助10
11秒前
11秒前
脑洞疼应助soft采纳,获得10
14秒前
orixero应助soft采纳,获得10
14秒前
JamesPei应助火火采纳,获得10
14秒前
15秒前
爆炸米花发布了新的文献求助10
15秒前
晓驿完成签到,获得积分10
17秒前
18秒前
可可发布了新的文献求助10
19秒前
不安青牛发布了新的文献求助20
20秒前
22秒前
22秒前
25秒前
甜晞发布了新的文献求助10
26秒前
爆炸米花完成签到,获得积分10
27秒前
llly完成签到,获得积分10
27秒前
Nora发布了新的文献求助30
30秒前
锅锅应助周钰玲采纳,获得10
30秒前
31秒前
科目三应助甜晞采纳,获得10
35秒前
little完成签到,获得积分10
37秒前
YKL99完成签到,获得积分10
37秒前
37秒前
万万完成签到,获得积分10
38秒前
qft发布了新的文献求助10
38秒前
科目三应助斑马采纳,获得10
40秒前
Rita发布了新的文献求助30
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818608
求助须知:如何正确求助?哪些是违规求助? 3361624
关于积分的说明 10413632
捐赠科研通 3079880
什么是DOI,文献DOI怎么找? 1693398
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248