量子位元
量子计算机
计算机科学
连贯性(哲学赌博策略)
相干时间
忠诚
受控非门
物理
光电子学
电子工程
量子门
量子
量子力学
工程类
电信
作者
Aaron Weinstein,Matthew D. Reed,Aaron M. Jones,Reed W. Andrews,David W. Barnes,Jacob Blumoff,Larken E. Euliss,Kevin Eng,Bryan H. Fong,Sieu D. Ha,Daniel R. Hulbert,Clayton Jackson,Michael P. Jura,Tyler Keating,Joseph Kerckhoff,Andrey A. Kiselev,Justine W. Matten,Golam Sabbir,Aaron Smith,J.A. Wright
出处
期刊:Nature
[Nature Portfolio]
日期:2023-02-06
卷期号:615 (7954): 817-822
被引量:90
标识
DOI:10.1038/s41586-023-05777-3
摘要
Qubits encoded in a decoherence-free subsystem and realized in exchange-coupled silicon quantum dots are promising candidates for fault-tolerant quantum computing. Benefits of this approach include excellent coherence, low control crosstalk, and configurable insensitivity to certain error sources. Key difficulties are that encoded entangling gates require a large number of control pulses and high-yielding quantum dot arrays. Here we show a device made using the single-layer etch-defined gate electrode architecture that achieves both the required functional yield needed for full control and the coherence necessary for thousands of calibrated exchange pulses to be applied. We measure an average two-qubit Clifford fidelity of $97.1 \pm 0.2\%$ with randomized benchmarking. We also use interleaved randomized benchmarking to demonstrate the controlled-NOT gate with $96.3 \pm 0.7\%$ fidelity, SWAP with $99.3 \pm 0.5\%$ fidelity, and a specialized entangling gate that limits spreading of leakage with $93.8 \pm 0.7\%$ fidelity.
科研通智能强力驱动
Strongly Powered by AbleSci AI