计算机科学
负载平衡(电力)
移动边缘计算
计算机网络
分布式计算
任务(项目管理)
负荷管理
移动计算
GSM演进的增强数据速率
服务器
电信
网格
电气工程
工程类
数学
经济
管理
几何学
作者
Mariam Yahya,Alexander Conzelmann,Setareh Maghsudi
标识
DOI:10.1109/lcomm.2024.3416833
摘要
We study the problem of decentralized task offloading and load-balancing in a dense network with numerous devices and a set of edge servers. Solving this problem optimally is complicated due to the unknown network information and random task sizes. The shared network resources also influence the users' decisions and resource distribution. Our solution combines the mean field multi-agent multi-armed bandit (MAB) game with a load-balancing technique that adjusts the servers' rewards to achieve a target population profile despite the distributed user decision-making. Numerical results demonstrate the efficacy of our approach and the convergence to the target load distribution.
科研通智能强力驱动
Strongly Powered by AbleSci AI