清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Familiarity, confidence and preference of artificial intelligence feedback and prompts by Australian breast cancer screening readers

乳腺摄影术 乳腺癌 医学 置信区间 乳腺癌筛查 人工智能 背景(考古学) 乳腺癌意识 考试(生物学) 乳房成像 放射科 家庭医学 医学物理学 癌症 计算机科学 内科学 古生物学 生物
作者
Phuong Dung Trieu,Melissa L. Barron,Zhengqiang Jiang,Seyedamir Tavakoli Taba‬,Ziba Gandomkar,Sarah Lewis
出处
期刊:Australian Health Review [CSIRO Publishing]
卷期号:48 (3): 299-311
标识
DOI:10.1071/ah23275
摘要

Objectives This study explored the familiarity, perceptions and confidence of Australian radiology clinicians involved in reading screening mammograms, regarding artificial intelligence (AI) applications in breast cancer detection. Methods Sixty-five radiologists, breast physicians and radiology trainees participated in an online survey that consisted of 23 multiple choice questions asking about their experience and familiarity with AI products. Furthermore, the survey asked about their confidence in using AI outputs and their preference for AI modes applied in a breast screening context. Participants’ responses to questions were compared using Pearson’s χ2 test. Bonferroni-adjusted significance tests were used for pairwise comparisons. Results Fifty-five percent of respondents had experience with AI in their workplaces, with automatic density measurement powered by machine learning being the most familiar AI product (69.4%). The top AI outputs with the highest ranks of perceived confidence were ‘Displaying suspicious areas on mammograms with the percentage of cancer possibility’ (67.8%) and ‘Automatic mammogram classification (normal, benign, cancer, uncertain)’ (64.6%). Radiology and breast physicians preferred using AI as second-reader mode (75.4% saying ‘somewhat happy’ to ‘extremely happy’) over triage (47.7%), pre-screening and first-reader modes (both with 26.2%) (P < 0.001). Conclusion The majority of screen readers expressed increased confidence in utilising AI for highlighting suspicious areas on mammograms and for automatically classifying mammograms. They considered AI as an optimal second-reader mode being the most ideal use in a screening program. The findings provide valuable insights into the familiarities and expectations of radiologists and breast clinicians for the AI products that can enhance the effectiveness of the breast cancer screening programs, benefitting both healthcare professionals and patients alike.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ih完成签到 ,获得积分20
13秒前
31秒前
xun发布了新的文献求助10
35秒前
49秒前
萝卜猪完成签到,获得积分10
53秒前
weihe完成签到,获得积分10
1分钟前
Dr.c发布了新的文献求助10
1分钟前
Dr.c完成签到,获得积分10
1分钟前
魁梧的盼望完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
萨尔莫斯发布了新的文献求助10
2分钟前
科研通AI5应助萨尔莫斯采纳,获得10
2分钟前
ZhouYW应助予秋采纳,获得10
3分钟前
斯文败类应助哈哈哈采纳,获得10
3分钟前
badbaby完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
哈哈哈发布了新的文献求助10
3分钟前
喜悦向日葵完成签到 ,获得积分10
3分钟前
萨尔莫斯发布了新的文献求助10
3分钟前
Ih关注了科研通微信公众号
3分钟前
Pumpkin应助哈哈哈采纳,获得10
4分钟前
科研通AI5应助DrS采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
XD824发布了新的文献求助80
5分钟前
5分钟前
CC发布了新的文献求助10
5分钟前
Zoe完成签到 ,获得积分10
5分钟前
852应助jason采纳,获得10
5分钟前
5分钟前
6分钟前
予秋发布了新的文献求助10
6分钟前
Kevin发布了新的文献求助10
6分钟前
6分钟前
予秋发布了新的文献求助10
6分钟前
予秋发布了新的文献求助10
6分钟前
萨尔莫斯发布了新的文献求助10
7分钟前
予秋发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340645
关于积分的说明 10300882
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762608