Comparison between a novel compressed sensing-based neural network and traditional neural network approaches for electrical impedance tomography reconstruction

电阻抗断层成像 压缩传感 迭代重建 人工神经网络 计算机科学 反问题 重建算法 均方误差 人工智能 算法 断层摄影术 反向 模式识别(心理学) 数学 物理 数学分析 光学 统计 几何学
作者
Damond M. Li,Marco G. Araiza,Long Wang
标识
DOI:10.1117/12.3010509
摘要

Electrical Impedance Tomography (EIT) is a non-destructive and non-radioactive imaging technique used to detect anomalies in a material of interest. Applications of EIT range from medical imaging and early tumor detection to identifying structural damage. Within the past decade, deep learning (DL)-based EIT reconstruction has been an emerging field of study as it shows promise in addressing many of the challenges associated with the non-linear, ill-conditioned nature of EIT inverse problems. The DL-based approach allows for the conductivity of materials to be reconstructed directly through Neural Networks (NNs) as opposed to iteratively with conventional inverse reconstruction algorithms. So far, the reported DL-based NNs for EIT have mostly been trained by minimizing the Mean Squared Error (MSE) between the predicted and "true" outputs (i.e., conductivity distributions). The performance of these current NNs heavily relies on both the quality and quantity of training data. The NNs trained with simulated data may perform poorly with experimental data. On the other hand, generating sufficient experimental data NN training can be extremely expensive and time-consuming, if feasible at all. To advance the DL-based reconstruction for EIT, this study develops a novel NN architecture, trained with a custom loss function, that serves as a surrogate model for the compressed sensing-based EIT reconstruction algorithm. In other words, the NN is trained to mimic a compressed sensing algorithm that performs the EIT conductivity reconstruction. This approach enables the NN to accurately capture the electrical properties and characteristics of the sensing domain when trained with limited data of varying quality. The performance of the proposed NN was compared to other DL models trained with the traditional MSE loss function by evaluating their reconstruction resolution, accuracy, and other training metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoxihan发布了新的文献求助10
2秒前
完美世界应助辛勤芷天采纳,获得10
2秒前
overlood发布了新的文献求助10
3秒前
整齐半青完成签到 ,获得积分10
4秒前
5秒前
科研通AI2S应助www采纳,获得10
5秒前
旗亭画壁完成签到 ,获得积分10
5秒前
Orange应助ZZQ采纳,获得10
5秒前
孔wj完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
搜集达人应助专一的白萱采纳,获得10
9秒前
fabea完成签到,获得积分0
11秒前
12秒前
厚朴大师完成签到,获得积分10
13秒前
在水一方应助隐形的凡阳采纳,获得10
13秒前
科研人完成签到,获得积分10
13秒前
超级的青荷完成签到,获得积分10
15秒前
15秒前
16秒前
18秒前
18秒前
无极微光应助overlood采纳,获得20
18秒前
19秒前
星川发布了新的文献求助10
19秒前
hxz完成签到 ,获得积分10
20秒前
21秒前
22秒前
英姑应助苗条的一一采纳,获得10
22秒前
23秒前
经久发布了新的文献求助10
23秒前
无花果应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
隐形曼青应助科研通管家采纳,获得30
24秒前
田様应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556203
求助须知:如何正确求助?哪些是违规求助? 4640817
关于积分的说明 14663035
捐赠科研通 4582830
什么是DOI,文献DOI怎么找? 2513629
邀请新用户注册赠送积分活动 1488255
关于科研通互助平台的介绍 1459006