信号(编程语言)
计算机科学
医学
计算生物学
生物
程序设计语言
作者
Adam J. Widman,Minita Shah,Amanda Frydendahl,Daniel Halmos,Cole C. Khamnei,Nadia Øgaard,Srinivas Rajagopalan,Anushri Arora,Aditya Deshpande,William F. Hooper,J. Quentin,Jake Bass,Mingxuan Zhang,Theophile Langanay,Laura Andersen,Zoe Steinsnyder,Will Liao,Mads H. Rasmussen,Tenna Vesterman Henriksen,Sarah Østrup Jensen
出处
期刊:Nature Medicine
[Springer Nature]
日期:2024-06-01
卷期号:30 (6): 1655-1666
被引量:63
标识
DOI:10.1038/s41591-024-03040-4
摘要
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition. Detection of circulating tumor DNA using MRD-EDGE, a machine-learning-guided single-nucleotide variant and copy-number variant detection platform for signal enrichment, enables monitoring of minimal residual disease and immunotherapy response in settings of low tumor burden.
科研通智能强力驱动
Strongly Powered by AbleSci AI